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Abstract

Vehicle-routing problems (VRP), which can be considered a generalization of TSP, have been studied in depth. Many
variants of the problem exist, most of them trying to find a set of routes with the shortest distance or time possible for a
fleet of vehicles. This paper combines two important variants, the stochastic time-dependent VRP and the multi-objective
VRP. A genetic algorithm for solving the problem is introduced. A comparison of two fitness functions, with significant
difference in computational time, is also presented. Finally, a comparison of solution selection based on TOPSIS method
and the two fitness functions is also examined. Results show that a significant decrease in running time, minutes
compared to hours, can be achieved, with no impact on the final results of the algorithm.
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I. INTRODUCTION

The Vehicle-Routing Problem (VRP) is a common
name for problems involving the construction of a set of
routes for a fleet of vehicles. The vehicles start their routes
at a depot, call at customers, to whom they deliver goods,
and return to the depot. VRP, which can be considered a
generalization of the "Traveling-Salesman Problem" [1], is
a NP-Hard problem and, therefore, cannot be solved
optimally within a reasonable running time. Since the
problem was first introduced in 1959, a large number of
algorithms for solving it, based on various heuristics and
meta-heuristics, as well as extensions to the basic VRP,
aiming to produce more realistic models, usually by adding
more constraints to the original problem, were introduced.
For a discussion about some of the most important
algorithms developed so far, and various extensions see [2],
[3] and [4].

This paper is based on an on going work, which aims to
develop a model and an algorithm for solving the multi-
objective real-time vehicle routing problem. In real-time
vehicle routing problems, information, such as customers
demands, travel time between two points and more, is not
known to the algorithm at the beginning, and is reviled as
the algorithm progress. If a given solution has to be
updated, based on the new information, the changes to the
solution  are  very  small  (if  any)  as  long  as  the  new
information is processed as soon as it has been reviled.
Genetic algorithms, a meta-heuristics for solving
optimization problems, was chosen as a method for solving
the multi-objective real-time vehicle routing problem. In
genetic algorithms a set of solution is created in each
iteration (the number of iteration is chosen by the user or is
defined as a condition), based on the set of solution created
in the previous iteration. It is easily possible to update a set
of solution based on new information, and continue with
this set as the base for the new set of solution. This is the

main reason for choosing genetic algorithm. Several factors
may affect the quality of a solution obtained from a genetic
algorithm.  One  of  them  is  the  quality  of  accuracy  of  the
fitness functions, on which the algorithm is based when
creating the next generation of solutions in a given
iteration. In this paper we address the problem of choosing
the right fitness function for solving the multi-objective
real-time vehicle routing problem, focusing on the accuracy
and speed of calculation vs. the quality of the solution and
the rate of conversion. To simplify the analysis, instead of
using the multi-objective real-time vehicle routing
problem, the multi-objective stochastic time-dependent
vehicle routing problem, which is a combination of three
known extensions, (1) stochastic VRP, (2) time-dependent
VRP and (3) multi-objective VRP, was used.

The rest of this paper is as follows. Chapter 2 provides
a literature review on Time Dependent VRP, stochastic
VRP and multi-objective VRP. Chapter 3 provides a
mathematical formulation of the multi-objective stochastic
time-dependent vehicle routing problem. A genetic
algorithm for solving the problem is described in chapter 3,
and a discussion various aspects regarding the algorithm
and its performance are presented in chapter 4. The
conclusions are presented in chapter 5.

II. LITERATURE REVIEW

A. Time Dependent VRP
In the real world, especially in urban areas, the travel

time is dependent on both the distance between two
customers and the time of day. Ignoring the fact that for
some routes the travel time changes throughout the day,
may result in solutions that are far from optimal. For that
reason, the Time-Dependent VRP (TDVRP) was
developed.  Whereas  most  VRP  variants  look  for  the
shortest paths in terms of length, the TDVRP seeks the
shortest paths in terms of travel time.
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There has been limited research related to the time-
dependent vehicle routing problem compared to other VRP
models [5].

Time  dependent  VRP  was  first  formulated  by
Malandraki and Daskin [6, 7] using a mixed integer linear
programming formulation. Malandraki and Daskin
developed two algorithms for solving the problem, a
greedy nearest-neighbor algorithm, and a branch and
bound-based algorithm that provided better solutions, but
was suitable only for small problems. Hill and Benton [8]
also studied the vehicle routing problem with time-
dependent travel times and proposed a simple greedy
heuristic for the problem.

Ahn and Shin [9] discussed modifications to the
savings, insertion, and local improvement algorithms to
better cope with TDVRP.

An important property for time dependent problems is
the First In - First Out (FIFO) principal [9, 10]. A model
with a FIFO property guarantees that if two vehicles left
the same location for the same destination (and traveled
along the same path), the one that left first would never
arrive later than the other. While it is an intuitive and
desirable property, it is not present in earlier work [6-8,
11], and therefore, the FIFO property is not guaranteed.

Ichoua, Gendreau and Potvin [10] introduced a model
that guarantees the FIFO principle. This model is satisfied
by working with step-like speed distributions and adjusting
the travel speed whenever a vehicle crosses the boundary
between two consecutive time periods. The algorithms that
they developed, which were based on the tabu-search meta-
heuristic, provided better solutions for most test scenarios.

Fleischmann, Gietz and Gnutzmann [12] utilized route
construction methods already proposed in the literature,
savings and insertion, to solve uncapacitated time
dependent VRP with and without time windows.
Fleischmann and Gietz assume travel times to be known
between all pairs of interesting locations and constant
within given time slots. Neighbor slots with similar travel
times are joined to reduce memory requirements, and the
transitions between slots are smoothed to ensure a FIFO
property on travel times. Fleischmann and Gietz tested
their algorithms in instances created from Berlin travel time
data. Time dependent VRP with time windows was also
addressed by Hashimoto, Yagiura and Ibaraki [13] who
proposed an iterated local search algorithm.

 Jung and Haghani [14, 15] proposed a genetic
algorithm to solve time dependent problems. By
formulating the problem as a mixed integer linear
programming problem, they obtain lower bounds by
relaxing most of the integer requirements. The lower
bounds are compared with the primal solutions from the
genetic algorithm to evaluate the quality of the solutions.
Using randomly generated test problems, the performance
of the genetic algorithm was evaluated by comparing its
results with exact solutions.

Van Woensel, Kerbache, Peremans and Vandaele [16]
used a tabu search to solve CVRP with time dependent
travel times (with no time windows). Approximations
based on queuing theory and the volumes of vehicles in a
link were used to determine the travel speed. Donati,

Montemanni, Casagrande, Rizzoli and Gambardella [17]
proposed an algorithm based on an ant colony heuristic
approach and a local search improvement approach. The
algorithm was tested using a real life network in Padua,
Italy, and some variations of the Solomon problem set.

Ji  and  Wu  [5]  proposed  a  revised  scheme  to  the
Artificial Bee Colony algorithm (a new population-based
metaheuristic approach proposed by Karaboga [18],
inspired by the intelligent foraging behavior of honeybee
swarm), with improved performance for solving
Capacitated VRP with Time-dependent Travel Times.
Using a set of instances of different size, Ji and Wu showed
that the ABC algorithm is improved in term of better
solution achieved, greater robustness and higher
computational efficiency.

B. Stochastic VRP
A stochastic vehicle-routing problem arises when at

least one of the problem's variables is random [19]. Over
the years, different solution frameworks have been
developed for solving the problem [20]. A taxonomy of
these frameworks classifies them into dynamic or static
[21].

Stochastic VRP can be divided into the following
classes [22]: (1) VRP with stochastic demand (VRPSD), in
which the vehicles serve a set of customers with stochastic
and uncertain demands [23-26]. (2) VRP with stochastic
customers (VRPSC), in which each customer has a
deterministic demand and a probability p of being present.
(3) VRP with stochastic customers and demands, a
combination of VRPSD and VRPSC. For a detailed survey
of the SVRP, one may refer to [19].

A stochastic model is usually modeled in two stages
[25]. In the first stage, a planned a-priori route is
determined. In the second stage, corrective action, based on
actual information, is applied to the solution of the first
stage. Methods modeled in two stages include a branch-
and-bound method based on the integer L-shaped algorithm
for solving VRP with stochastic demands, proposed by
Laporte, Louveaux and Van Hamme [27]. In a more recent
work, Rei, Gendreau and Soriano [28] tackled the single
VRPSD (SVRPSD), a variant where only one route is to be
designed. Their method consists of using local branching to
generate optimality cuts on an integer L-shaped algorithm.
Although successful, these approaches are limited to solve
instances of up to 100 customer nodes.

Stochastic travel times were introduced into the
vehicle-routing problem by Laporte, Louveaux and
Mercure [29], who presented a CCP model. Their aim was
to find a set of paths that had a travel time that was no
longer than a given constant value. The problem was
solved optimally by means of an Integer L-shaped
algorithm for 10 n 20 and two to five travel time
scenarios (each scenario corresponds to a different travel
speed for the entire network).

In VRP with Stochastic Travel Times (VRPSTT).
Vehicles follow their planned routes and may incur a
penalty if the route duration exceeds a given deadline. It is
natural to make this penalty proportional to the elapsed
route  duration  in  excess  of  the  deadline  [29].  Another
possibility is to define a penalty proportional to the
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uncollected demand within the time limit, as is the case in a
money collection application studied by Lambert, Laporte
and Louveaux [30]. Wang and Regan [31] have proposed
models for this class of problems under the presence of
time windows.

In a more recent study, Kenyon and Morton [32] have
investigated properties of VRPSTT solutions and have
developed bounds on the objective function value. They
have developed two models for the stochastic VRP with
random travel and service times and an unknown
distribution. The first model minimizes the expected
completion time, and the second model maximizes the
probability that the operation is complete prior to a pre-set
target time T. Both models are based on a heuristic that
combines branch-and-cut and Monte-Carlo simulation
which, if run to completion, terminates with a solution
value within a preset percentage of the optimum. Using
small instances (9-nodes and 28-nodes) Kenyon and
Morton showed that using their models' solutions to
VRPSTT can be significantly better than solutions obtained
by solving the associated mean-value model.

C. Multi-objective VRP
VRPs are frequently used to model real cases.

However, they are often set up with the single objective of
minimizing the cost of the solution, although the majority
of the problems encountered in industry, particularly in
logistics, are multi-objective in nature. As an example
consider the work of Park and Koelling [33, 34], in which,
the distance traveled must be minimized to avoid damaging
the product being transported. Multi-objective optimization
is one possible way to study other objectives other than the
one initially defined, without changing the definition of the
problem. The purpose of such extensions is often to
enhance the practical applications of the model by
recognizing that logistics problems are not only cost
driven. An excellent survey of related multi-objective
VRPs is given by Jozefowiez, Semet and Talbi [35]. This
section will review some of the most recent research in this
field.

Multi-objective routing problems are usually studied
for a specific real-life situation, in which decision makers
define several clear objectives that they would like to see
optimized.

Gupta, Singh and Pandey [36] presented a case study
with the overall goal of developing a plan for the Jain
University bus service to be able to serve all customers in
the most efficient way. In this study four objectives were
considered: (1) the minimization of the total route length,
(2) the minimization of the fleet size, (3) the maximization
of average grade of customer satisfaction, and (4) the
minimization of total waiting time over vehicles.

Motivated by the case of Lantmannen, a large
distributor operating in Sweden, Wen, Cordeau, Laporte
and Larsen [37] proposed model and solve the dynamic
multi-period vehicle routing problem (DMPVRP). In the
DMPVRP, customers place orders dynamically over a
planning horizon consisting of several periods. Each
request speci es a demand quantity, a delivery location and
a set of consecutive periods during which delivery can take
place. The distributor must plan its delivery routes over
several days so as to (1) minimize the total travel time and

(2) customer waiting, and to (3) balance the daily workload
over the planning horizon.

Faccio, Persona and Zanin [38] studied the problem of
municipality solid waste collection optimization
considering real time input data, homogeneous and variable
fleet size based in a single depot. In the study three
objective functions where addressed: (1) the minimization
of the number of vehicles, (2) the minimization of travel
time and (3) the minimization of total distance covered.

Anbuudayasankar, Ganesh, Lenny Koh and Ducq [39]
addressed the bi-objective vehicle routing problems with
forced backhauls, in which the optimization of the process
of  replenishing  money  in  ATMs  is  considered  as  a  bi-
objective problem which minimizes the total routing cost
and the span of travel tour.

Most of the studies dealing with objectives related to
node/arc activity involve time windows. In such studies,
the time windows are replaced by an objective that
minimizes either the number of violated constraints [40],
the total customer and/or driver’s wait time due to earliness
or lateness [41-43], or both objectives at the same time
[44].

One objective that often appears is the minimization of
the  number  of  vehicles.  For  VRP with  time windows,  the
classic model has two objectives that are treated
lexicographically (1) minimizing the number of vehicles
and (2) minimizing then the length of the solution for that
given number of vehicles. The existing research on multi-
objective VRPs with time windows assigns the same level
of priority for both objectives, rather than considering them
lexicographically.

Some multi-objective routing problems do not share
common objectives with classic routing problems at all.
For example, Jozefowiez, Semet and Talbi [45] propose a
meta-heuristic method based on an evolutionary algorithm
for solving a bi-objective vehicle routing problem in which
the total length of routes is minimized as well as the
balance of routes, i.e.  the di erence between the maximal
route length and the minimal route length.

Chitty and Hernandez [46] define a dynamic VRP in
which the total mean transit time and the total variance in
transit time are minimized simultaneously. Likewise,
Murata and Itai [47, 48] define a bi-objective VRP which
seeks to minimize both the number of vehicles and the
maximum routing time of those vehicles (makespan).

III. THE MULTI-OBJECTIVE STOCHASTIC TIME-
DEPENDENT VEHICLE-ROUTING PROBLEM

This chapter provides a mathematical formulation to the
multi-objective stochastic time-dependent vehicle routing
problem. Since VRP is a hard optimization problem [2, 3],
the complexity of the problem will remain the same as
CVRP, at least, because of the time dimension and the
stochastic properties of the problem. Next a simple genetic
algorithm designed for solving multi-objective
optimization problems is described. This algorithm
provides a set of routes that optimizes the following three
objectives (all were addressed in previous litrature): (1)
minimizing the total travel time [41-43, 49]; (2) minimize
the number of vehicles in use [43, 47, 48, 50] and (3)
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minimize the difference of travel times among the routes of
the solution [46], considering the following properties: (1)
for certain routes, the travel time varies during the day and
(2) travel time is stochastic.

A. Mathematical Formulation
Let G=(V,E) be a complete graph, where V={0,…,n} is

the vertex set and E is the edge set. Each vertex i V\{0}
represents a customer, having a non-negative demand di,
whereas vertex 0 corresponds to the depot. Each edge
e E={(i,j):i,j V,i<j} is associated with a stochastic time-
dependent nonnegative cost, t

ijc , which represents the
travel cost (equal to the travel time) spent to go from vertex
i to vertex j starting at time t.

The use of the loop edges, (i,i), is not allowed (this is
imposed by defining t

iic  for all i V ). A fixed fleet
of M identical vehicles, each of capacity D, is available at
the depot.

The  Stochastic  Time-Dependent  VRP  calls  for  the
determination of a set of at most M routes whose total
travel cost is minimized and such that: (1) for a given
probability, , the total travel cost will not be higher than

*c ; (2) each customer is visited exactly once by one route;
(3) each route starts and ends at the depot, (4) and the total
demand of the customers served by a route does not exceed
the vehicle capacity D.

It is possible to solve the stochastic time-dependent
VRP using a mixed integer linear programming, however,

an estimate, t

ijc , to the stochastic cost function, t

ijc , has to
be defined first.

The travel time cost function, t

ijc , is stochastic in
nature, meaning that it may vary from one day to another.
Therefore, the cost function, t

ijc , is associated with a mean,
t

ijc , which describes the average travel time from node

i to node j at time t and a standard deviation, t

ijc ,
which shows how much variation there is from the mean.
As an estimation to t

ijc  the mean t

ijc  can be used.
However, for a route based on this estimation, the total
travel time of the route will not reflect the possibility of
arriving to node earlier or later than expected, and the
changes in travel time it may cause. For that reason a
different estimation to the stochastic cost function, t

ijc , is

suggested. Let t  be  an  impact  factor,  which  defines

how much the value of t

ijc  is affected by possible changes
in travel time (compared to the mean) in previous and
future time intervals, and is defined as

'

''
max

t

ij

tt t
ij

c
t t

c
. The estimation to the stochastic

cost function, t

ijc , is defined as

'
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. In this definition t

ijc  equals

to an average of expected values of t

ijc , thereby taking into
consideration the possibility of being early or late. Based
on this definition, the objective functions are:
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Three objective functions are considered in this model.
The first objective function is minimizing the total travel
time, and is defined in equation (1). The second objective
function, defined in equation (2), is minimizing the number
of vehicles in use, and the third objective function,
minimize the difference of travel times among the routes of
the solution, is expressed by minimizing the standard
deviation of the traveling time of each route in a set of
routes and defined in equations (4) and (3).

 In this model, constraint (5) states that a vehicle cannot
travel from one node to itself. As stated before, all vehicles
must start their routes at the depot (constraint (6)) and end
their routes at the depot (constraint (7)). However, not all
vehicles must leave the depot (implied by constraint (6)).
Three constraints ensure that each customer is visited
exactly once, when constraint (8) states that each visited
customer, j, is visited by a vehicle arriving from either the
depot (i=0) or another customer ( , 0i N i ). Similarly,
constraint (9) states that a vehicle serving customer i, must
leave to either the depot (j=0) or another customer
( , 0j N j ). Constraint (10) is a route continuity
constraint. This constraint states that if there is a vehicle,
visiting customer i, that leaves to customer p, and there also
exists a vehicle, visiting customer p, that leaves to
customer j, then, then the vehicle traveling from customer i
to customer p, is the same vehicle traveling from customer
p to customer j. If node j is visited after visiting node i, then
the departure time, t, from node j is equal to or greater than
the departure time from node i plus the travel time from
node i to node j at time t. This is described by constraint
(11). A demand constraint (constraint (12)) is also added.
This constraint states that the total demand of all customers
visited by the same vehicle must be less from or equal to
the capacity of the vehicle. Constraint (13) is a chance
constraint stating that the desired solution is a set of routes,
that for a given probability, , the traveling time will not be
higher than *c .  A  method  for  the  determination  of  the
value of *c  is described next in this chapter. The last
constraint (constraint (14)) is added in order to verify that
the decision variables, mt

ijx , get values of either 0 or 1.

As mention earlier, constraint (13) is a chance
constraint, which guarantees that the travel time of the set
of routs, obtained by solving the mixed integer linear
programming formulation, will not be higher than *c  for a
given probability, .

Let * t

ijc  be an instance of the stochastic cost function,
t

ijc . A relaxed deterministic version of the previous linear

programming, can be defined by substituting t

ijc  with * t

ijc .

A set of possible traveling times, *Z  can be created by
solving the relaxed deterministic linear programming a
large number of times (each time using a different instance
of the cost function). From this set, *' minZ Z Z

can be chosen, which satisfies * 'ZZ ZP  as
*c .

B. The Concept of “Best Solution”
In single objective optimization problems, the “best”

solution is defined in terms of an “optimum solution” for
which the objective function value is optimized when
compared to any other alternative in the set of all feasible
alternatives. In multi-objective optimization problems,
however, as the optimum of each criterion do not usually
point to the same alternative, a conflict exists. The notion
of an “optimum solution” does not usually exist in the
context of conflicting, multiple criteria. Optimal solution in
multi-objective optimization problem is usually equivalent
to choosing the best compromise solution. The “best
solution” may be the “preferred (or best compromise)
solution”  or  a  “satisfying  solution.”  In  the  absence  of  an
optimal solution, the concepts of dominated and non-
dominated solutions become relevant. In the multi-
objective optimization literature, the terms “non-dominated
solution,” “Pareto optimal solution,” and “efficient
solution” are used interchangeably. In addition, concepts of
“ideal solution” and “anti-ideal solution” are relevant in
many multi-objective optimization methods.

A feasible solution that meets or exceeds the decision
maker’s minimum expected level of achievement (or
outcomes) of criteria values is referred to as a Satisfying
Solution.

A feasible solution (alternative) x1 dominates another
feasible solution (alternative) x2 if x1 is at least as good as
(i.e., as preferred as) x2 with respect to all objective
functions and is better than (i.e., preferred to) x2 with
respect to at least one objective function. A non-dominated
solution is a feasible solution that is not dominated by any
other feasible solution. That is, for a non-dominated
solution an increase in the value of any one objective
function is impossible without some decrease in the value
of at least one other objective function. Mathematically, a
solution 1x X  is non-dominated if there is no other

x X  such that 1i iC x C x , i = 1,2,...,k, and

1i iC x C x .

IV. A MULTI-OBJECTIVE GENETIC ALGORITHM

The first GA dealing with multiple objectives was the
Vector Evaluated Genetic Algorithm (VEGA) proposed by
Schaffer  [51].  Being  aware  of  the  potential  GAs  have  in
multi-objective optimization, Schaffer proposed an
extension of the simple GA to accommodate vector-valued
fitness measures. In the VEGA Algorithm, the selection
step was modified so that, at each generation, a number of
sub-populations were generated by performing proportional
selection according to each objective function in turn.
Thus, for a problem with q objectives, q sub-populations of
size N/q each would be generated, assuming a population
size of N. These would then be shuffled together to obtain a
new population of size N, in order for the algorithm to
proceed with the application of crossover and mutation in
the usual way. However, as noted by Richardson, Palmer,
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Liepins and Hilliard [52], shuffling all the individuals in
the sub-populations together to obtain the new population
is equivalent to linearly combining the fitness vector
components to obtain a single-valued fitness function. The
weighting coefficients, however, depend on the current
population. This means that, in the general case, not only
will two non-dominated individuals be sampled at different
rates, but also, in the case of a concave trade-off surface,
the population will tend to split into different species, each
of them particularly strong in one of the objectives.
Schaffer anticipated this property of VEGA and called it
speciation. Speciation is undesirable in that it is opposed to
the aim of finding a compromise solution.

This multi-objective optimization strategy has already
been applied successfully for experimental medium
optimization in many cases [53]. Although there are more
recent published multi-objective GAs, such as the Non-
Dominated Sorting Genetic Algorithm-II (NSGA-II) [54]
and the Strength Pareto Evolutionary Algorithm (SPEA)
[55], in this paper, the VEGA algorithm is used due to its
simplicity.

A. An Improved VEGA Algorithm
The main disadvantage of the VEGA algorithm is the

lack  of  elitism.  In  this  section,  an  extended version  of  the
VEGA algorithm, that uses elitism, is presented. In a
regular GA, elitism means, that in every generation, the top
ranked chromosomes are passed, without changes to the
next generation. In this version of the algorithm, the set of
non-dominated chromosomes is passed to the next
generation.

The following is a description of the improved VEGA
algorithm. For this problem, the structure of the
chromosomes, crossover operation and mutation operations
are the ones describes by [56].

PopSize – Population size

ProbCrossover – Probability of crossover

ProbMutation – Probability of mutation

IdealSolutionCount – Ideal Solution Counter

NumOfGeg – Number of generations

1. IdealSolutionCount=0
2. Population = Randomlly created population of size

PopSize
3. Calculate the fitnesses of each Chromosome in

Population
4. SaveNonDominated(Population,Elitism)
5. PrevIdealSolution = GetIdealSolution(Elitism);
6. Repeat NumOfGen times
7.   If |Elitism|>ElitismSize
8. Population = CreateNewGeneration (Population,

PopSize, ProbMutation, ProbCrossover)
9.  Else
10. Population = CreateNewGeneration

(Population,PopSize - |Elitism|,
ProbMutation, ProbCrossover)

11. Population = Population+Elitism
12. Calculate the fitnesses of each Chromosome in

Population
13. SaveNonDominated(Population,Elitism
14. CurrentIdealSolution=GetIdealSolution(Elitism)
15. If CurrentIdealSolution=PrevIdealSolution
16. IdealSolutionCount=IdealSolutionCount+1
17. If IdealSolutionCount=10
18. IdealSolutionCount=0
19. ProbMutation=ProbMutation+0.05
20. if ProbMutation>1

21. ProbMutation=1
22. else
23. IdealSolutionCount=0
24. ProbMutation=0.1

The IVEGA algorithm starts with a creation of an initial
population of size PopSize. Generally, the chromosomes of
the initial population are randomly created, but in some
cases, chromosomes can be created based on an initial
solution (found by using any other heuristic algorithm).
Next, for each chromosome, for each objective function, a
fitness value is calculated. All non-dominated
chromosomes found in the initial population are stored in
the elitism set, using the SaveNonDominated procedure. The
following is an iterative process, which is repeated
NumOfGen times. The first step of the iterative process is
the creation of a new population. If the size of the elitism
set if bigger than ElitisimSize,  the  size  of  the  new
population is PopSize and the elitism set is added to the
new population, otherwise it is PopSize-ElitisimSize. The
new population is created using the CreateNewPopulation
procedure. Again, for each chromosome, for each objective
function, a fitness value is calculated. All non-dominated
chromosomes are stored in the elitism set. If there is no
change in the ideal solution of the previous solution and the
current solution for the last 10 iteration (a parameter)
ProbMutation is increased, the probability for mutation by
0.05 (a parameter), otherwise, ProbMutation is set it to its
original value.
CREATENEWPOPULATION(POPULATION,POPSIZE,PROBMUTATION,PROBCROSSOVER)
1. ObjSize= PopSize / NumOfObjectives
2. ObjIndex = -1
3. for i=1 to PopSize
4.  if i mod ObjSize = 0
5. ObjIndex = ObjIndex + 1
6.  select Chromosome1 based on objective number

ObjIndex
7.  select Chromosome2 based on objective number

ObjIndex
8.  perform crossover operation with probability

ProbCrossover
9.  perform mutation operations with probability

ProbMutation
10.  add the new chromosomes to the new population
11. return new Population

The CreateNewPopulation procedure creates PopSize
new chromosomes. Since multi objectives are optimized, a
number of sub-populations, equal to the number of
objectives, are generated by performing proportional
selection according to each objective function in turn.
Thus, for a problem with q objectives, q sub-populations of
size PopSize/q each would be generated.

SAVENONDOMINATED(POPULATION,ELITISM)
1. Elitism=
2. For each Chromosome in Population do
3. IsDominated=false
4.  For each Chromosome in Elitism do
5. if Population’s Chromosome is dominated by

Elitism’s Chromosome or Chromosomes are the
same

6.          IsDominated=true
7.  If IsDominated=false
8. For each Chromosome in Elitism
9. If Elitism’s Chromosome is dominated by

Population’s Chromosomes
10. Remove Elitism’s Chromosome from

Elitism
11. Add Population’s Chromosome to Elitism
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Adding a chromosome to the set of elitism chromosome
is a two steps process. First the chromosome is checked
whether it is dominated by any of the chromosomes in the
elitism set or not. If the chromosome is a non-dominated
chromosome, it is added to the elitism set. Next, the new
chromosome is checked whether it dominates any other
chromosome in the elitism set. Such dominated
chromosomes are removed from the elitism set.

B. Algorithm’s Performance
An important part of any genetic algorithm, whether it

solves a single objective problem or a multi objectives
problem, is the proper selection of chromosomes from
which the next generation is created. In the literature,
several methods for the selection process can be found, all
of them relay on a ranking mechanism, known as fitness
function, which can rank the chromosomes based on the
objective function(s).

Three objective functions are addressed in this paper:
(1) minimizing the total travel time; (2) minimize the
number of vehicles in use and (3) minimize the difference
of travel times among the routes of the solution. For this
reason, three fitness functions have to be defined, each for
each objective function. The first fitness function should
return the total traveling time of a set of routes. The second
fitness function should return the size of a set of routes (the
number of routes in the set). The third fitness function
should return the standard deviation of the traveling time of
each route in a set of routes. Due to the stochastic nature of
the problem, the first and last fitness functions have to use
simulation in order to get accurate values.

Simulation  works  by  traveling  paths.  Each  path  is
traveled w time, when w is pre-determined by the user. The
traveling times are stored in an array, and are sorted. The
returned traveling time, C, returned by the simulation is
defined as the traveling time stored in entry w·  of  the
array. Assuming that =0.95, this means that in 95% of all
cases, the actual traveling time will be shorter than C.  A
higher value of w will, usually, increase the accuracy of the
result obtained from the simulation.

A high value of w usually results in accurate results of
the simulation; however, it increases dramatically the
running time of the algorithm. For example, in this paper,
values of w=1 and w=1000 were used. Using the IVEGA
algorithm, several problems where solved. The average
running time when w=1 was about 20 minutes, and when
w=1000, about 8 hours. Next it will be shown that w=1 can
be used without affecting the algorithm performance
(meaning that for different values of w the algorithm
converges to the same results).

1) Converges

To validate this approach, a methodology normally
adopted in the evolutionary multi-objective optimization
literature was used.

The use of performance measures (or metrics) allows
the assessment (in a quantitative way) of algorithm’s
performance. For multi objective optimization problems,
measures tend to focus on the objective domain as to the
accuracy of the results. For this comparative study, the two
following metrics were implemented:

Two Set Coverage (SC): This metric was proposed by
Zitzler, Deb and Thiele [55], and it can be termed relative
coverage comparison of two sets. Consider 'X  and ''X  as
two competing sets of phenotype decision vectors. SC is
defined as the mapping of the order pair ', ''X X  to the

interval 0,1 , which reflects the percentage of individuals
in one set ( ''X ) dominated by the individuals of the other
set  ( 'X ). The mathematical definition of this metric is
shown in equation (15):

'' ''; ' ' : ' ''
( ', '')

''

a X a X a a
SC X X

X
   (15)

This definition implies that CS=1 when all points in
'X  dominate or equal to all points in ''X . SC=0 implies

the opposite. In general, ', ''SC X X  and '', 'SC X X
both have to be considered due to set intersections not
being empty. Of course, this metric can be used for both
spaces (objective function or decision variable space), but
in this case it was applied to objective function space. It
should be noted, that knowledge of the PFtrue is not required
for this metric. This important property is the main reason
for choosing this metric.

Error Ratio (ER): This metric was proposed by
Veldhuizen [57] to indicate the percentage of solutions in
the known Pareto front, PFknown, that are not members of
the true Pareto front, PFtrue. In order to use this metric, it is
essential that that the researcher knows the PFtrue. The
mathematical representation of this metric is shown in
equation (16):

0

n

i
i

e
ER

n
                           (16)

where n is the number of vectors in PFknown and ei is a 0
when the i vector is an element of PFtrue or 1 if i is not an
element. It should then be clear that ER=0 indicates an
ideal behavior, meaning that the PFknown is the same as
PFtrue;  but when ER=1 indicates that none of the points in
PFknown are in PFtrue.

However, since know PFtrue is not known, a slightly
different definition to the error ratio metric is presented.
Given a set of non-dominated solutions, ND, (obtained
from the last iteration of the genetic algorithm) and a
known Pareto front, PFknown, the error ratio metric is
defined  as  the  percentage  of  vectors  in ND, that are not
members of PFknown. Using the formulation presented in
(16), the new ER can be calculated, where n is the number
of  vectors  in ND and ei is a 0 when the i vector is an
element of PFknown or 1 if i is not an element.

A genetic algorithm usually starts with a randomly
generated first generation, however, if the first generation
is smartly generated, for example, by using results obtained
from an heuristic algorithm, then the genetic algorithm will
converge to the optimal solution much faster, and the
result, assuming that the same parameters, such as the
number of generations, are kept, will be more accurate.
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As stated before, the fitness evaluation procedure uses
simulation, which works by traveling paths. Each path is
traveled w time, when a high value of w usually results in
accurate results of the simulation, and therefore, a more
accurate  fitness  value  is  obtained.  It  will  be  shown  that
w=1 can be use without affecting the algorithm
performance (meaning that for different values of w the
algorithm converges to the same results). In order to show
that, 30 test problems were randomly generated, 10 with 50
customers, another 10 with 100 customers, and the last 10
problems with 150 customers. In all test problems, the
number of time intervals is 24, and in each time internal the
speed is in the range of Each problem was solved 4 times,
twice with w=1 ("approximated" fitness evaluation) and
twice with w=1000 ("exact" fitness evaluation).

2) Metrics Comparison Results

In this section the results of the metrics comparison,
using paired-samples t-tests are reported. Throughout this
section X’ refers to a solution obtained when w=1 and X’’
to a solution obtained when w=1000. In genetic algorithm,
since the way the first generation was generated may
change the results of the algorithm, each comparison is
done twice, once using a randomly generated first
population and the second using a savings based first
population.

Eight paired-samples t-tests were conducted to compare
the results of the two set coverage metric (CS(X’,X’’) vs.
CS(X’’,X’)). The results are listed in  TABLE I.

The results show that for problems with 50 and 100
customers, when the first generation was randomly
generated or Savings based, there is no significant
difference in the scores for CS(X’,X’’) and CS(X’’,X’).
However, for problems with 150 customers, there is a
significant difference in the scores for CS(X’,X’’) and
CS(X’’,X’). This indicates that by average, 59% of the non-
dominated solutions, when the first generation was
randomly generated, and 29% of the non-dominated
solutions,  when  the  first  generation  was  Savings  based,
obtained from the last iteration of the genetic algorithm,
when w=1, are dominated by the non-dominated solutions
obtained when w=1000. In addition, 26% of the non-
dominated solutions, when the first generation was
randomly generated, and 54% of the non-dominated
solutions,  when  the  first  generation  was  savings  based,
obtained when w=1000, are dominated by the non-
dominated solutions obtained when w=1. From the above,
it can be concluded that for problems with 150, the results
obtained when w=1000 are better than the results obtained
when w=1 when using a randomly generated first
generation. However, if the first generation is Savings
based, then results obtained when w=1 are better than the
results obtained when w=1000. Two paired-samples t-tests,
in which all groups of problems are combined to a single
sample, shows that there is no significant difference in the
scores for CS(X’,X’’) and CS(X’’,X’).

TABLE I. A COMPARISON OF CS(X’,X’’) AND CS(X’’,X’) USING
PARIED-SAMPLES T-TESTS

CS(X’,X’’) CS(X’’,X’)Size M SD M SD t df Sig.
Randomly generated fist population

50 0.479 0.411 0.493 0.459 -0.112 39 0.911

CS(X’,X’’) CS(X’’,X’)Size M SD M SD t df Sig.
100 0.349 0.447 0.397 0.447 -0.382 39 0.705
150 0.59 0.458 0.258 0.411 2.654 39 0.011
All 0.411 0.424 0.416 0.411 -0.064 119 0.949

Savings based first population
50 0.535 0.41 0.452 0.376 0.690 39 0.494
100 0.408 0.435 0.254 0.365 1.427 39 0.162
150 0.29 0.399 0.541 0.446 -2.199 39 0.034
All 0.473 0.447 0.389 0.446 1.235 119 0.219

As with the results of the two set coverage metric,
paired-samples t-tests were used to check if there are any
differences in the results of the error ratio metric for w=1
and for w=1000,. The results are listed in  TABLE II.

The  results  show that  for  problems with  50,  when the
first generation was randomly generated or Savings based,
there is no significant difference in the scores for ER(X’)
and ER(X’’). This is also the case for problems with 100
customers, when the first generation was randomly
generated and for problems with 150 customers, when the
first generation is Savings based.

However, for problems with 150 customers, when the
first generation was randomly generated and for problems
with 100 customers, when the first generation is Savings
based, there is a significant difference in the scores for
ER(X’) and ER(X’’). This means that for problems with
150 customers, when the first generation was randomly
generated, by average 55% of the non-dominated solutions
do not belong to PFknown when w=1, while, when w=1000,
80% of the non-dominated solutions do not belong to
PFknown. Similarly, for problems with 100 customers, when
the first generation is Savings based, by average 49% of the
non-dominated solutions do not belong to PFknown when
w=1 while, when w=1000, 73% of the non-dominated
solutions do not belong to PFknown.

This means, that for problems with 150 customers,
when the first generation was randomly generated and for
problems with 100 customers, when the first generation
was Savings based, the chance for a non-dominated
solution belongs to PFknown is twice higher when w=1 than
when w=1000.

The results of the paired-samples t-tests, in which all
groups of problems are combined to a single sample, show
that there is no significant difference in the scores for
ER(X’) and ER(X’’).

TABLE II. A COMPARISON OF ER(X’) AND ER(X’’) USING PARIED-
SAMPLES T-TESTS

ER(X’) ER(X’’)Size M SD M SD T df Sig.
Randomly generated fist population

50 0.852 0.248 0.759 0.308 1.402 39 0.169
100 0.734 0.383 0.589 0.458 1.416 39 0.165
150 0.552 0.481 0.803 0.353 -2.535 39 0.015
All 0.712 0.399 0.717 0.389 -0.088 119 0.93

Savings based first population
50 0.699 0.307 0.74 0.306 -0.532 39 0.598
100 0.496 0.404 0.731 0.342 -2.592 39 0.013
150 0.695 0.343 0.585 0.427 1.229 39 0.227
All 0.63 0.364 0.686 0.366 -1.092 119 0.277
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From the results, it can be concluded that the results
obtained from the genetic algorithm, whether using w=1 or
w=1000 are the same, regardless of the problem size and
the method for the generation of the first population.

3) TOPSIS Comparison

In most cases, when solving a multi-objective
optimization problem, the result is a set of non-dominated
solution, from which, the decision maker has to choose his
preferred alternative. In an automated enviourment, a
mechanism for choosing a preferred solution from a set of
non-dominated solution has to be implemented. A number
of techniques for automating the process of choosing have
been developed. Among the various methods, one can find
the Max-Min method, Min-Max method, Compromise
Programming, ELECTRE Method and more [58]. In this
paper, the TOPSIS method is used as a mean for choosing
a preferred alternative.

In the previous section, it has been shown that a set of
non-dominated solution obtained when w=1 is as good as a
set of non-dominated solution obtained when w=1000.
However, this does not mean that the same results exist in
both sets, and therefore, it is not guaranteed that the
TOPSIS  method  selects  similar  results  from  both  sets.  In
this section, a comparison of the results of TOPSIS method
applied on the solution sets obtained from the 30 test cases
is presented.

A solution is a set of three results, each for every
objective function. The analysis begins with correlation
analysis. Correlation analysis is used to check whether
there exists a correlation between the three values of a
result  or  not.  As  with  the  metrics  comparison,  each
comparison is done twice, once using a randomly generated
first population and the second using a savings based first
population.

Eight Pearson product-moment correlation coefficients
were computed to assess the relationship between the
results of the first objective function and the second
objective function. The results are listed in  TABLE III.

TABLE III. PEARSON PRODUCT-MOMENT CORRELATION
COEFFICIENTS BETWEEN THE FIRST AND SECONDS OBJECTIVES, FOR W=1

AND W=1000

w=1 w=1000Problem
Size Obj. 2 Obj. 2

Randomly generated fist population

50 Obj. 1 r=0.94, n=40,
p=0 Obj. 1 r=0.954, n=40,

p=0

100 Obj. 1 r=0.973, n=40,
p=0 Obj. 1 r=0.986, n=40,

p=0

150 Obj. 1 r=0.909, n=40,
p=0 Obj. 1 r=0.944, n=40,

p=0

All Obj. 1 r=0.81, n=120,
p=0 Obj. 1 r=0.785, n=120,

p=0
Savings based first population

50 Obj. 1 r=0.835, n=40,
p=0 Obj. 1 r=0.814, n=40,

p=0

100 Obj. 1 r=0.82, n=40,
p=0 Obj. 1 r=0.865, n=40,

p=0

150 Obj. 1 r=0.281, n=40,
p=0.079 Obj. 1 r=0.174, n=40,

p=0.282

All Obj. 1 r=0.716, n=120,
p=0 Obj. 1 r=0.716, n=120,

p=0

For problems with 50, 100 and 150 customers, whether
the first generation was randomly created or Savings based,
a positive correlation between the two variables was found
for solutions obtained when w=1 and for solutions obtained
when w=1000. Since a strong positive correlation, exist
between the two variables, a correlation analysis, using the
results of all problems as a single result was performed.
The results show a positive correlation when using w=1
and when using w=1000.

A second set of eight Pearson product-moment
correlation coefficients was computed to assess the
relationship between the results of the first objective
function and the third objective function. All tests, whether
the first generation was randomly created or Savings based,
show a negative correlation. However, since the third
objective minimizes the difference of travel times among
the routes of the solution, and is defined in means of
standard deviation, and since the maximum value obtained
for this objective is 0.05 when w=1 and 0.009 when
w=1000, it can be assumed that the value of the third
objective is always 0, and therefore, ignore it in the
analysis.

Since it has been shown that a correlation exists
between the first and second objectives, and that the third
objective can be ignored, since it can be treated as zero, a
paired t-test can be used to compare the results obtained by
using the TOPSIS method.

Eight paired-samples t-tests were conducted to compare
the results obtained by using the TOPSIS method when
w=1  and  when w=1000. The results are listed in  TABLE
IV.

All paired-samples t-tests show that there is no
significant difference in the scores for w=1 and for
w=1000.

TABLE IV. A COMPARISON OF TOPSIS RESULTS FOR W=1 AND
W=1000 USING PARIED-SAMPLES T-TESTS

W=1 w=1000Problem
Size M SD M SD t df Sig.

Randomly generated fist population
50 31.2 10.6 30.9 10.2 0.429 39 0.67
100 72.1 28.8 70.9 26.3 0.899 39 0.374
150 76.3 15.8 79.1 14.2 -1.967 39 0.056
All 59.8 28.2 60.3 27.8 -0.676 119 0.5

Savings based first population
50 24.9 12.3 24.8 11.9 0.02 39 0.984
100 52.7 31.7 51.9 30.6 0.244 39 0.808
150 42.2 27.0 40.6 26.4 0.34 39 0.736
All 39.9 27.4 39.1 26.6 0.417 119 0.678

C. Travel time characteristics

The previous analysis shows that it is possible to
increase the running time of the algorithm by use an
"approximated" fitness function, without influencing the
accuracy of the algorithm. The analysis was done using 30
randomly generated test problems, with 50, 100 and 150
customers, all having 24 time intervals, when for each time
interval the travel speed ranges from 80-120 KM/H, with
empiric probability. However, travel time is more likely to
be lognormally distributed because (1) the positive skew
shape (i.e., right skewed) is more suitable for travel time
description; that is, a higher probability exists for long
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travel time than for short travel time, and (2) the range [0,
) of the distribution is more natural than a truncated

normal distribution (because negative travel times are
impossible) [59].

For that reason, a second set of tests was done, this time
using Solomon’s instances.  Since Solomon’s instances
were designed for TWVRP, a simple modification had to
be done. Solomon’s instances provide the location of each
customer, assuming that the travel speed is constant. Since
this is not the case in this problem, time intervals were
added (24 of them) and for each time interval a lognormal
random travel time functions was assigned for which

=0.03 and =4.1 (theses values may slightly change
between time interval) and therefore the average traveling
speed is 60 KM/H. In order to decrease running time,
Solomon’s instances were solved using the IVEGA
algorithm, using 500 generations and population size of
200, once when w=1 and next when w=100. The results of
the test are presented in  TABLE V.

TABLE V. A COMPARISON OF TOPSIS RESULTS FOR W=1 AND
W=100 USING PARIED-SAMPLES T-TESTS

w=1 w=100
Size Type M SD M SD t df Sig.

Randomly generated fist population
C1 3.35 0.03 3.34 0.04 0.641 35 0.526
C2 2.47 0.09 2.45 0.1 0.561 31 0.579
R1 4.14 0.86 3.63 0.22 3.912 47 0
R2 3.15 0.28 3.15 0.22 -

0.059 43 0.953

RC1 3.96 0.24 3.84 0.21 2.492 31 0.018

25

RC2 2.57 0.13 2.59 0.15 -0.69 31 0.495
C1 6.6 0.22 6.61 0.44 -

0.133 35 0.895

C2 5.4 0.55 4.94 0.1 4.616 31 0
R1 11.83 1.21 11.4 1.45 1.466 47 0.149
R2 11.63 0.67 11.54 0.94 0.538 43 0.593

RC1 9.46 0.69 9.27 0.78 0.931 31 0.395

50

RC2 8.6 0.72 8.46 0.41 1.027 31 0.312
C1 16.44 1.01 16.35 0.94 0.467 35 0.643
C2 14.4 1.00 13.85 0.94 2.292 31 0.029
R1 38.94 2.38 37.43 1.85 3.462 47 0.001
R2 35.74 3.01 32.37 2.71 5.224 43 0

RC1 32.88 2.45 30.99 0.29 3.514 31 0.001

100

RC2 28.41 3.29 24.76 1.96 5.604 31 0
Savings based first population

C1 3.38 0.07 3.37 0.07 0.453 35 0.653
C2 2.38 0.09 2.35 0.08 1.544 31 0.133
R1 4.36 1.07 3.66 0.28 4.413 47 0
R2 3.32 0.3 3.23 0.31 1.427 43 0.161

RC1 4.11 0.26 4 0.19 1.971 31 0.058
25

RC2 2.51 0.1 2.54 0.1 -
1.275 31 0.212

C1 6.4 0.08 6.34 0.01 4.128 35 0
C2 5.34 0.85 4.96 0.26 2.42 31 0.022
R1 12.56 1.26 11.21 0.8 6.353 47 0
R2 11.91 0.6 11.27 0.63 5.16 43 0

RC1 9.17 0.63 8.89 0.22 2.412 31 0.022

50

RC2 8.61 0.67 8.42 0.53 1.258 31 0.218
C1 14.92 0.63 14.53 0.08 4.253 35 0
C2 12.33 0.57 11.45 0.54 6.486 31 0
R1 38.88 2.42 37.81 1.78 2.466 47 0.017
R2 35.76 2.19 32.16 2.27 7.837 43 0

RC1 29.82 2.17 28.54 1.34 2.894 31 0.007

100

RC2 28.21 4.07 24.22 1.74 4.836 31 0

As seen from the results, for problems with 25 and 50
customers, when using randomly generated first generation,

and for problems with 25 customers when using a savings
based first generation, these is no difference in the TOPSIS
results when using w=1 and w=100. However, for problems
with 100 customers, when using randomly generated first
generation, and for problems with 50 and 100 customers
when using a savings based first generation, a better
solution is obtained when w=100 compared to the solution
obtained when w=1.

As stated before, in order to decrease running time,
Solomon’s instances were solved using the IVEGA
algorithm, using 500 generations and population size of
200. It is known that the number of generations used by a
genetic algorithm may affect its results. Generally, a high
number of generations gives the algorithm more chance to
converge towards the optimal solution than a low number
of generations. However, in real-time applications, the
number of generations is bounded by the time given to the
algorithm to come with a solution. For that reason, the
algorithm was tested again, this time the stopping condition
was 30 minutes of running time, instead of the 500
generations. Results are reported (TABLE VI) for
problems with 100 customers.

TABLE VI. A COMPARISON OF TOPSIS RESULTS FOR W=1 AND
W=100 USING PARIED-SAMPLES T-TESTS

w=1 w=100
Size Type M SD M SD t df Sig.

Randomly generated fist generation
100 C1 14.85 0.67 16.43 0.81 -8.883 35 0
100 C2 12.64 1.58 14.19 0.74 -4.814 31 0

100 R1 33.67 2.08 39.61 1.69 -
14.488 47 0

100 R2 32.77 4.57 38.62 2.94 -7.073 43 0
100 RC1 30.14 2.23 33.22 1.07 -7.905 31 0
100 RC2 27.13 4.42 28.14 2.49 -0.979 31 0.335

Savings based first generation
100 C1 14.56 0.4 14.5 0.45 -0.411 35 0.684
100 C2 11.72 1.31 12.15 2.03 0.985 31 0.332

100 R1 34.44 2.56 40.09 1.53 -
13.098 47 0

100 R2 31.25 2.79 39.58 2.31 -
16.071 43 0

100 RC1 27.29 1.12 30.16 2.11 -6.568 31 0
100 RC2 24.92 4.21 26.27 1.4 -1.841 31 0.075

As  can  be  seen  from  TABLE  VI,  when  using  a
randomly generated first generation, the results obtained by
the algorithm, when w=1 were better than the results
obtained when w=100, except for RC2, in which no
significant difference were found between the results.
When using a savings based first generation, the results
obtained by the algorithm, when w=1 were better than the
results obtained when w=100, for problems R1, R2 and
RC1, while for problems C1, C2 and RC2 no significant
difference were found between the results.

More over, an analysis of the converges of the
algorithm shows, that when w=100, the best solution is
reached after almost 30 minutes of running, while the same
solution is found much earlier, when w=1. To illustrate
these finding, the analysis of problems C101, C201, R101,
R201, RC101 and RC201 is given for both randomly
generated and savings based first generation.

For problem C101, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
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equals 16.52, objective two equals 10 and objective three
equals 0, after 422 generations (see Figure 1). Since the
algorithms, when w=100, was able to generate 486
generations in 30 minutes, this means that the algorithms
best solution was reached after 26 minutes and 10 seconds.
For the same problem, C101, when w=1, the algorithm
reached the best solution after 326 generations out of 7916
generation that were generated during 30 minutes,
meaning, after one minute and ten seconds. More over,
when using w=1, the algorithm was able to reach a better
solution than the best solution, in which objective one
equals 19.95, objective two equals 10 and objective three
equals 0, after 7394 generations, meaning after 28 minutes
and one second.
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Figure 1. Algorithm convergence when w=1 (top) and w=100 (buttom)
for problem C101 during the first 30 minutes

For problem C201, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 13.23, objective two equals 3 and objective three
equals 0, after 422 generations (see Figure 2). Since the
algorithms, when w=100, was able to generate 464
generations in 30 minutes, this means that the algorithms
best solution was reached after 27 minutes and 17 seconds.
For the same problem, C201, when w=1, the algorithm
reached the best solution after 733 generations out of 7397
generation that were generated during 30 minutes,
meaning, after one 9 minutes and ten seconds. More over,
when using w=1, the algorithm was able to reach a better
solution than the best solution, in which objective one
equals 10.54, objective two equals 3 and objective three
equals 0, after 1799 generations, meaning after 22 minutes
and 30 seconds.
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Figure 2. Algorithm convergence when w=1 (left) and w=100 (right) for
problem C201 during the first 30 minutes

For problem R101, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 38.72, objective two equals 8 and objective three
equals 0, after 345 generations (see Figure 3). Since the
algorithms, when w=100, was able to generate 365
generations in 30 minutes, this means that the algorithms
best solution was reached after 28 minutes and 21 seconds.
For the same problem, R101, when w=1, the algorithm
reached the best solution after 309 generations out of 1692
generation that were generated during 30 minutes,
meaning, after 5 minutes and 28 seconds. More over, when

using w=1, the algorithm was able to reach a better solution
than the best solution, in which objective one equals 32.07,
objective two equals 8 and objective three equals 0, after
1052 generations, meaning after 18 minutes and 39
seconds.
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Figure 3. Algorithm convergence when w=1 (left) and w=100 (right) for
problem R101 during the first 30 minutes

For problem R201, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 39.15, objective two equals 2 and objective three
equals 0.00047, after 207 generations (see Figure 4). Since
the algorithms, when w=100, was able to generate 215
generations in 30 minutes, this means that the algorithms
best solution was reached after 28 minutes and 53 seconds.
For the same problem, R201, when w=1, the algorithm
reached the best solution after 154 generations out of 1246
generation that were generated during 30 minutes,
meaning, after 3 minutes and 42 seconds. More over, when
using w=1, the algorithm was able to reach a better solution
than the best solution, in which objective one equals 32.91,
objective two equals 2 and objective three equals 0.00008,
after 785 generations, meaning after 18 minutes and 54
seconds.
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Figure 4. Algorithm convergence when w=1 (left) and w=100 (right) for
problem R201 during the first 30 minutes

For problem RC101, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 30.53, objective two equals 10 and objective three
equals 0, after 321 generations (see Figure 5). Since the
algorithms, when w=100, was able to generate 327
generations in 30 minutes, this means that the algorithms
best solution was reached after 29 minutes and 26 seconds.
For the same problem, RC101, when w=1, the algorithm
reached the best solution after 432 generations out of 806
generation that were generated during 30 minutes,
meaning, after 16 minutes and 4 seconds. More over, when
using w=1, the algorithm was able to reach a better solution
than the best solution, in which objective one equals 28.52,
objective two equals 10 and objective three equals 0, after
704 generations, meaning after 26 minutes and 12 seconds.
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Figure 5. Algorithm convergence when w=1 (left) and w=100 (right) for
problem RC101 during the first 30 minutes

For problem RC201, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 26.99, objective two equals 2 and objective three
equals 0.00001, after 307 generations (see Figure 6). Since
the algorithms, when w=100, was able to generate 323
generations in 30 minutes, this means that the algorithms
best solution was reached after 28 minutes and 30 seconds.
For the same problem, RC201, when w=1, the algorithm
reached the best solution after 425 generations out of 979
generation that were generated during 30 minutes,
meaning, after 13 minutes and one second. More over,
when using w=1, the algorithm was able to reach a better
solution than the best solution, in which objective one
equals 24.22, objective two equals 2 and objective three
equals 0, after 967 generations, meaning after 29 minutes
and 37 seconds.
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Figure 6. Algorithm convergence when w=1 (left) and w=100 (right) for
problem RC201 during the first 30 minutes

For problem C101, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 13.92, objective two equals 10 and objective three
equals 0, after one generations (see Figure 7). Since the
algorithms, when w=100, was able to generate 513
generations in 30 minutes, this means that the algorithms
best solution was reached after 0 minutes and 0 seconds.
For the same problem, C101, when w=1, the algorithm
reached the best solution after 1 generations out of 7747
generation that were generated during 30 minutes,
meaning, after 0 minutes and 0 seconds.
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Figure 7. Algorithm convergence when w=1 (left) and w=100 (right) for
problem C101 during the first 30 minutes

For problem C201, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 10.89, objective two equals 3 and objective three

equals 0, after 494 generations (see Figure 8). Since the
algorithms, when w=100, was able to generate 500
generations in 30 minutes, this means that the algorithms
best solution was reached after 29 minutes and 38 seconds.
For the same problem, C201, when w=1, the algorithm
didn't reach the best solution after 2569 generations that
were generated during 30 minutes.
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Figure 8. Algorithm convergence when w=1 (left) and w=100 (right) for
problem C201 during the first 30 minutes

For problem R101, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 38.07, objective two equals 8 and objective three
equals 0, after 371 generations (see Figure 9). Since the
algorithms, when w=100, was able to generate 380
generations in 30 minutes, this means that the algorithms
best solution was reached after 29 minutes and 17 seconds.
For the same problem, R101, when w=1, the algorithm
reached the best solution after 362 generations out of 1812
generation that were generated during 30 minutes,
meaning, after 5 minutes and 59 seconds. More over, when
using w=1, the algorithm was able to reach a better solution
than the best solution, in which objective one equals 30.04,
objective two equals 8 and objective three equals 0, after
1706 generations, meaning after 28 minutes and 14
seconds.
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Figure 9. Algorithm convergence when w=1 (left) and w=100 (right) for
problem R101 during the first 30 minutes

For problem R201, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 37.9, objective two equals 2 and objective three
equals 0.00007, after 175 generations (see Figure 10).
Since the algorithms, when w=100, was able to generate
177 generations in 30 minutes, this means that the
algorithms best solution was reached after 29 minutes and
14 seconds. For the same problem, R201, when w=1, the
algorithm reached the best solution after 162 generations
out of 1308 generation that were generated during 30
minutes, meaning, after 3 minutes and 51 seconds. More
over, when using w=1, the algorithm was able to reach a
better solution than the best solution, in which objective
one equals 33.61, objective two equals 2 and objective
three equals 0.00009, after 874 generations, meaning after
20 minutes and two seconds.
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Figure 10. Algorithm convergence when w=1 (left) and w=100 (right) for
problem R201 during the first 30 minutes

For problem RC101, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 28.47, objective two equals 9 and objective three
equals 0, after 358 generations (see Figure 11). Since the
algorithms, when w=100, was able to generate 362
generations in 30 minutes, this means that the algorithms
best solution was reached after 29 minutes and 40 seconds.
For the same problem, RC201, when w=1, the algorithm
reached the best solution after 798 generations out of 1164
generation that were generated during 30 minutes,
meaning, after 20 minutes and 34 seconds. More over,
when using w=1, the algorithm was able to reach a better
solution than the best solution, in which objective one
equals 25.93, objective two equals 9 and objective three
equals 0, after 1099 generations, meaning after 28 minutes
and 19 seconds.
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Figure 11. Algorithm convergence when w=1 (left) and w=100 (right) for
problem RC101 during the first 30 minutes

For problem RC201, when w=100 the algorithm, using
TOPSIS, reached its best solution in which objective one
equals 26.95, objective two equals 2 and objective three
equals 0.00002, after 343 generations (see Figure 12).
Since the algorithms, when w=100, was able to generate
363 generations in 30 minutes, this means that the
algorithms best solution was reached after 28 minutes and
20 seconds. For the same problem, RC201, when w=1, the
algorithm reached the best solution after 314 generations
out of 1057 generation that were generated during 30
minutes, meaning, after 8 minutes and 54 seconds. More
over, when using w=1, the algorithm was able to reach a
better solution than the best solution, in which objective
one equals 21.69, objective two equals 2 and objective
three equals 0, after 930 generations, meaning after 26
minutes and 23 seconds.

Generation

Va
lu

e

0 150 300 450 600 750 900 1050 1200 1350 1500
0

8

16

24

32

40

48

56

64

Generation

Va
lu

e

0 40 80 120 160 200 240 280 320 360 400
0

8

16

24

32

40

48

56

64

Figure 12. Algorithm convergence when w=1 (left) and w=100 (right) for
problem RC201 during the first 30 minutes

V. CONCLUSIONS

This paper presented the multi-objective stochastic
time-dependent vehicle routing problem. An improved
version of the VEGA genetic algorithm was also presented.
The main problem faced was the fitness functions, which,
in order to be accurate, uses simulation, a time consuming
operation.

It was shown that it is possible to increase the running
time of the algorithm by use an "approximated" fitness
function, without influencing the accuracy of the algorithm.
A fast algorithm is necessary when coping with real-time
problems, which is the final goal.

Two metrics, two set coverage and error ration, were
used to compare results obtained from 30 test cases when
using an "accurate" fitness function (meaning simulation)
and "approximated" fitness function. The results show that
there is no difference in the quality of the results obtained
using the two methods.

Usually, when solving a multi-objective optimization
problem, the result is a set of non-dominated solution, from
which, the decision maker has to choose his preferred
alternative. Since the final goal is to create an automated
algorithm for solving a real-time multi-objective vehicle
routing problem, the TOPSIS method, a mechanism for
choosing a preferred solution from a set of non-dominated
solution has been implemented. It was shown that there is
no difference in the quality of the results obtained using the
"approximated" or "accurate" methods, however, this does
not mean that the same results exist in both sets, and
therefore it is not guarantied that the TOPSIS method
selects similar results from both sets. It was shown, by
means of correlation testing and paired-samples t-tests, that
the solutions selected by the TOPSIS methods are similar
regardless of the method used for calculating the fitness
functions.

Since travel time is more likely to be lognormally
distributed a second set of tests was done, using Solomon’s
instances. Using 500 generation and a population of 200
chromosomes, the result of the IVEGA algorithm showed
that for problems with large number of chromosomes (50
and 100 customers) using w=100 results with a better
solution the when using w=1, while for problems with
small number of customers (25 and 50) no significant
difference was found. Since it is known that the number of
generations used by a genetic algorithm may affect its
results, and since in real-time applications, the number of
generations is bounded by the time given to the algorithm
to come with a solution. The algorithm was tested again,
this time the stopping condition was 30 minutes of running
time, instead of the 500 generations. This time the result
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showed that in all cases, the result obtained by the
algorithm when w=1 are better then the results obtained
when w=100. Moreover, when w=1, the algorithm
converges to the best solution much faster than when
w=100.

A future research should test more cases, in order to
broaden the analysis. More metrics can be used for the
comparison of the results obtained by using the different
methods for calculating the fitness functions.

Furthermore, it is possible to add more objectives to the
problem, and check whether the results remain the same, or
whether the results shown in the paper are specific to the
selected objectives.
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