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ABSTRACT

Natural and man-created disasters, such as hurricanes, earthquakes, tsunamis, accidents and
terrorist attacks, have shown the need for quick evacuation. Evacuation routes are mostly based
on the capacities of the road network. However, in extreme cases such as earthquakes, road
network infrastructure may adversely be affected, and may not supply the required capacities.
If for various situations, the potential damage for critical roads can be identified in advance, it
is possible to develop an evacuation model, which can be used in various situations to plan the
network structure in order to provide fast and safe evacuation. This paper focuses on the
development of a model for the design of an optimal evacuation network which simultaneously
minimizes construction costs and evacuation time. The model takes into consideration
infrastructures vulnerability (as a stochastic function which is dependent on the event location
and magnitude), road network, transportation demand and evacuation areas. A mathematic
model is introduced for the presented problem. Furthermore, a chance constraint is used to
provide the decision maker the means to assess the solution based on different risk levels. Since
an optimal solution cannot be found within a reasonable timeframe, a heuristic model is
presented as well. The heuristic model is based on evolutionary algorithms, which also provides
a mechanism for solving the problem as a stochastic and multi-objective problem.
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INTRODUCTION

Natural and man-created disasters, such as hurricanes, earthquakes, tsunamis, accidents and
terrorist attacks, require evacuation and assistance routes. A recent example is the Nepal 2015
earthquake. On Saturday, 25 April 2015, an earthquake of magnitude 7.8 (Mw), followed by
two powerful aftershocks hit Nepal, killing nearly 9000 people and injuring about 21000
people. Other examples, include the 2014 Nepal snowstorm disaster, the Fukushima Daiichi
nuclear accident (Japan 2011 tsunami), the 9/11 attacks and Hurricane Katrina, are examples
in which quick response evacuation and assistance routes are needed.

As of today, most research on emergency response operations focuses on evacuation
problems from the perspective of transportation modelling such as network design and traffic
assignment. In that context, transport networks are lifelines which support essential services,
and need to be preserved in their functionality in case of disruptions caused by events which
originate within (e.g. traffic accidents and technical failures) or outside the transport system
(e.g. debris-flows, floods, earthquakes, storms, etc.).

Moreover, evacuation is a stochastic process, however, most current evacuation models
treat the problem in a deterministic way. In some cases, distribution laws are incorporated into
the deterministic model to treat the randomness of human actions and decision inputs (7).
Obviously, stochastic modelling is more complex than deterministic modelling. It requires
more data collection and processing, sophisticated computational models, which, in turn have
a higher run times, output processing, etc.

In that context, evacuation routes are, mostly, based on the capacities of the roads
network. However, in extreme cases, such as earthquakes, roads network infrastructure may
have adversely affected, and may not supply their required capacities. If for various situations,
the potential damage for critical roads can be identify in advance, it is possible to develop an
evacuation model that can be used to recommend the construction of new road segments,
retrofit and improve critical links, locate shelter locations, etc.

This paper focuses on the development of a model for the design of an optimal evacuation
network which simultaneously minimizes construction costs and evacuation time. The model
takes into consideration the infrastructures vulnerability associated with the construction of a
road segment (as a stochastic function which is dependent on the event location and
magnitude), road network potential structure, transportation demand, and evacuation areas'
capacities. Furthermore, a chance constraint is used to provide the decision maker the means
to assess the solution based on different risk levels. Due to the overall complexity of the model
(multi-objective and stochastic), an optimal solution cannot be found within a reasonable
timeframe, and, therefore, a heuristic algorithm has to be developed and used.

LITERATURE REVIEW

Evacuation model design usually refer to network design and traffic assignment problem. There
are several different decisions that should be considered while developing an evacuation
models (7): (1) Selection of Evacuation Routes which should be performed in complex
scenarios where various possible escape routes leading to the evacuation location exist.
Usually, more than one escape route is required for the same group of people in order to manage
the possible evacuation routes. (2) Introduction of Delay Times that act as a mechanism for
avoiding possible congestion and bottleneck problems in overlapping routes, by delaying
evacuation movement of a group of people. (3) By dividing the evacuation route into several
parts, it is possible to control the speed of evacuation when the available safe egress time of
each piece of a route is known.
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The effectiveness of an evacuation operation is dependent on various factors, such as: (1)
The availability of resources, such as transit vehicles, volunteers and medical staff, that should
be optimally allocated. (2) The risk of exposure to disaster impact, which is proportional to the
waiting time at pickup locations, and therefore a common objective in this case, is minimizing
evacuation time. (3) The vulnerability of different locations within the evacuation zone and
their proximity to disaster sites. Ignoring any of these characteristics can reduce the
performance of the evacuation system (2).

While the evacuation network model presented in this paper takes into consideration
infrastructures vulnerability, according to Reggiani, Nijkamp (3), the vulnerability concept still
lacks a consensus definition, and it depends on the application context (4). However, according
to Mattsson and Jenelius (35) the definition suggested by Berdica (6), “Vulnerability in the road
transportation system is a susceptibility to incidents that can result in considerable reductions
in road network serviceability”, is often cited and representative of part of the literature.
Mattsson and Jenelius (5) who reviewed recent studied in the field of vulnerability and
resilience of transport systems concluded that there are two distinct traditions in vulnerability
studies. In the first approach vulnerability studies of transport networks are based on their
topological properties, which requires definitional network. It allows detailed analysis of
different attack strategies. Comparisons with other very different kinds of networks can also
be done. The second approach uses more or less sophisticated models, which require large
computational efforts, of the transport system, in which demand and supply side of the transport
system and travellers’ responses to disturbances and disruptions are integrated. This approach
requires extensive data about demand and supply aspects of the studied transport system, as
well as the availability of models for simulating the consequences of disruptive events,
whoever, it provides a more complete description of the problem and its consequences.

Hadas, Rossi (7) adopted a risk theory framework to represent degraded scenarios as a
list of “triplets”, each consisting of a description of the scenario (characteristics of the event),
the probability of that scenario occurring, and the impact of the scenario on the network (8).
Infrastructures vulnerability assessment can be performed with different approaches,
depending on the type of events and the infrastructures considered in the analysis. For example
in seismic events, fragility curves can assess the seismic vulnerability of bridges (9, 10), since
they take into account the uncertainties of variables and apply probabilistic distributions to
describe the properties of the materials composing the structures in question. Similarly,
interactions between road networks and damaged buildings can be included, for short- and
long-term conditions (e.g., (11)). In damaged road network link and node characteristics are
updated according to the functionality variation produced by events. Capacity and speed
reduction were commonly introduced for damaged links, such as bridges (12, 13), or for links
affected by building damages (711).

As concern travel demand, post-event demand changes may be modelled with travel
demand models which take in account specific analysis conditions and effects of supply
changes. In evacuation conditions, travel demand modelling is fundamental for evacuation
planning to mitigate the effects of events (such as earthquakes) (14, 15), given their
stochasticity (16, 17). Disaster Operation Management review by Galindo and Batta (16)
highlighted the variety of assumptions and methods adopted for evacuation models. For
evacuation after earthquakes, travel demand variation was estimated according to the reduction
of available surfaces of buildings (79), considering dead and injured people after building
damages (20).
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MATHEMATICAL MODEL

There are several evacuation models in the literature, which can be extended. The proposed
evacuation model is based on the one developed by Hadas and Laor (21), with the extension of
multi-objectives and stochastic capacities. Let G(N, A) be a graph, with N nodes and A arcs,
when {0} € N is the origin candidate set (residential areas), and {D} € N is the destination
candidate set (evacuation areas or shelters). Also let {(i,j)} € A arc candidate set, with i,j €
[1,...,N].

Minimize z Caij “Xayj + z Cn; " Xn, (1)

(i,j)eA I[EN

Maximize E (Z Z Z J’id) (2

0€0 deD i:(o,i)EA

Minimize E (T(Un,, .., Un,)) 3)
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Xq; € {0,1} v(i,j)eA 4)
Xy, €{0,1} VIiEN (5)
0<b;<Uy-x, Vi€O (6)
0<—b;<Up-x,, Vi€D (7)
b;=0 VigOuUD (8)
Z b; + Z b; =0 )
i€eo ieED
Z Z fi?d < Uaij Xy T Vv(,j)eA (10)
0€0 deD
9720,f9€Z V(i,j)EAo€0,deD (11)
2.0 D M=) ) ) M vieoun (12)
0€0 deD i:(i,j)eA 0€0 deD k:(j,k)EA
T(Uny, .., Un) >0 (13)

P(ZZ Z ;’isz*>za (14)
0€0 deD i:(o,i)EA

Objective (1) represents the construction costs, and since the problem is to be defined
with stochastic attributes, objectives, (2) and (3), are the expected flow and expected
evacuation time respectively, when Caij is the construction cost of arc (i,/), Cy, is the
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construction cost of node i, Xay and x,, are decision variables, fij’-d is s a feasible flow from
source 0 € O to the sink d € D along arc (i, j). Uy, is the capacity distribution function of node
i, and T is the expected evacuation time.

Constraints (4) and (5) define binary decision variables. Constraints (6) and (7) restrict
demand to facility capacity, when b; is the quantity of demand allocated to node i (positive
value — demand, negative value — supply), constraint (8) defines transshipment nodes and
constraint (9) enforce that total demand is equals to the total supply. Constraints (10) and (11)
defines arcs’ capacity over time, while constraint (12) defines conservation of flow. Constraint
(13) enforces positive evacuation time.

Since the flows along the various arcs are stochastic, it is possible that a given network
may have various solutions, meaning that the construction cost and evacuation time remain the
same, however, the flow may be different in each solution. Since the evacuation time is
dependent on the flow, building the network based on one possible solution, may not guarantee
that the evacuation time will remain as planned. For that reason, a chance constraint (14) is
also added to the model. The chance constraint is added to ensure that for every solution found,
the flow will be equal or higher than F* in a percent, for example a = 0.85 (85%), of the cases.

The model assumes that the flow is managed, meaning that the flow is controlled and
directed, by the rescue teams. This is in contrast to unmanaged flow, in which route selection
is based on user-equilibrium. Such an assumption can hold when evacuation is considered to
be performed with sufficient time to complete. Hence the need to optimize decision variable 7.

The following properties of the model, (1) multi-objective problem, (2) integer variables,
and (3) integral flow, increase its complexity, such that an optimal solution cannot be found
within a reasonable timeframe. Therefore, in order to decrease complexity, a stochastic multi-
objective heuristic has to be developed and used.

GENETIC ALGORITHM

A survey on multi-objective optimization methods (22) classifies the various methods into four
groups: (1) Methods with a priori articulation of preferences (such as the weighted sum (23)
and lexicographic (24) methods), (2) Methods for a posteriori articulation of preference (such
as the normal boundary intersection (NBI) (25, 26) and Normal constraint (NC) (27) methods),
(3) Methods with no articulation of preferences (such as the min-max method (28)) and (4)
Genetic algorithms (such as the VEGA, MOGA, NPGA, and NSGA methods, which are non-
elitism multi-objective genetic algorithms, in which the best solutions of the current population
are not preserved when the next generation is created, and PAES, SPEA2, PDE, NSGA-II and
MOPSO methods, which are example elitism multi-objective genetic algorithm, which
preserve the best individuals from generation to generation. In this way, the system never loses
the best individuals found during the optimization process (29)).

As can been from the above, genetic algorithms are suitable for solving multi-objective
optimization problem, moreover, they can be used for stochastic optimization problems as well.
Genetic Algorithms (GAs) usually assumes a stationary environment for solving an
optimization problem. In the first stage, a typical GA usually generates a random set of n
individuals, known as population, each associated with a solution. Next an iterative session
starts. At each iteration, each individual from the current population is evaluated and assigned
with a fitness value (using a fitness function), which states how “good” it is. Then, a new
population of size n is created. The new solutions are created by randomly choosing two parent
solutions from the current population, based on their goodness, on whom crossover and
mutation operations are performed to create two new solutions. By using this method, we
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assume that the new solutions of the new population are better than those of the current
population. The current population is replaced with the new population, and the process
continues until a stop condition is met, which could be a number of iterations, specific run time
or any other condition (30).

For a stochastic optimization problem, the fitness function literally expresses the fitness
of the individual, therefore the fitness function is fluctuated, according to the stochastic
distribution-functions for the stochastic variables. In each generation, the fitness function is
determined by random number generated according to the stochastic distribution-functions.
Eventually, the frequencies of individuals associated with solutions are investigated through
all generations. With roulette wheel selection strategy, for choosing parent solutions for
creating new solutions, suitable individuals are selected in proportion to their fitness function
value. Moreover, since roulette wheel selection allows sampling with replacement, the
selection pressure is relatively high. Therefore, by using roulette wheel selection, it is expected
that the higher the expected value is, the higher the individual frequency through all generations
is (30).

In order to simplify the algorithm’s implementation, MOEA framework (3/) has been
used. The MOEA Framework is a free, open source, Java library for developing and
experimenting with multi-objective evolutionary algorithms and other general-purpose
optimization algorithms. The MPEA framework provided several algorithms out-of-the-box,
including VEGA, NSGA-II, NSGA-III, e-MOEA, SPEA2 and others. The results presented
next in this paper were obtained using the NSGA-II algorithm (which is one of the most popular
MOEAs (32)).

EXPERIMENTAL RESULTS

In order to test the algorithm, five networks were created. The characteristics of the networks
are summarized in TABLE 1, and include the number of origin nodes, number to destination
nodes, total number of nodes and number of arcs. Furthermore, the model representation was
altered in a way that all origin and destination nodes were transformed to arcs. i.e. node i was
transformed to an arc (i’,i), with Cai,i = Cy;» Uai,i = Up,b. This representation increases the

computation efficiency, as the chromosome is composed of identical attributes.

TABLE 1 Characteristic of Various Test Networks

Num. of Nodes
Problem # Num. of Arc
Total Origin Destination
1 15 3 3 30
2 35 5 4 97
3 60 12 11 153
4 140 20 19 417
5 2700 100 99 10097

FIGURE 1 is an illustration of the first network. One possible solution for the first
network, marked in red in FIGURE 1, is composed from one single path: 2-8-11-14-5. The
results obtained for this possible solution were compared for three various scenarios: (1) all
arcs along the path have deterministic capacities, (2) arcs along the path are stochastics, with
small variance, and (3) all arcs along the path are stochastic with large variance. For the three
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scenarios, the construction cost of this path is 3956 and the evacuation time is 1, however,
when all arcs have deterministic capacities, the flow along this path is 30, when all arcs are
stochastic with small variance the average flow is 16, and when the variance is large the average
flow is 19.

FIGURE 1 An example of possible evacuation network.

As the example illustrated in FIGURE 1 shows, a path which has arcs with stochastic
characteristics may have different flows and evacuation times for different situations.
Nevertheless, similar relationships are found between the various objective functions for all
test networks

The relationships are demonstrated using the results of the algorithm for the first network.
In this case the solution is a Pareto set with 96 non-dominated solutions. FIGURE 2 depicts the
Pareto set for small variance (blue) and large variance (red). As can be seen from the results,
and illustrated in ~ C

FIGURE 2A, an increase in the cost allows the construction of a network with higher flow.
FIGURE 2B shows that there is a positive correlation between evacuation time and flow. As
the flow increases, the evacuation increases as well. However, for the cost and time objectives,
no special relationships were found, both when there was small variance and large variance
(FIGURE 2C).

FIGURE 2 also portrays the advantages of a multi-objective model — the presentation of
a full set of solution, from which the decision maker can choose a solution.
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FIGURE 2 Cost vs. Flow (A), Cost vs. Time (B) and Flow vs. Time (C) for the first network, when 70%
of the arcs have stochastic properties.

TABLE 2 summarizes the results obtained for all test networks, when 70% of the arcs
have stochastic properties with small variance, with emphasis on the chance constraint. Each
one of the solutions of the Pareto front was evaluated 100 times, therefore, for each solution it
is possible to determine a flow F*, that in a percent of the cases the obtained flow will be equal
or higher than F* (the chance constraint). For each network, the average running time (in
seconds) is given as well as the size of the Pareto front obtained, the cost of the solution, the
flow, for a« = 0.95, a = 0.9, a = 0.85, including the average flow - @ = 0.50, and the
evacuation time. Since the size of the Pareto front, for each of the test networks, is large, six
solutions from the Pareto front, are given as an example for each test network. The first solution
is a solution with lowest cost, while the second solution is a solution with highest cost.
Similarly, the third solution is a solution with highest flow, while the fourth solution is a
solution with lowest flow. Finally, the fifth solution is a solution with lowest evacuation time,
while the sixth solution is a solution with highest evacuation time.

As can be seen from the result, using a chance constraint results with a solution in which
the flow is lower compared to the flow obtained for the same solution based on the average
flow, as the higher the o, the more conservative the solution is (in terms of flow). This is due
to the fact the obtained flow must satisfies the chance constraint. Furthermore, the higher the
variance, the larger the change of the flow with respect to a.
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TABLE 2 Algorithm Results for Various Possible Networks in which 70% of the Arcs are Stochastics
with Small Variance

Problem Run Time Size of Pareto .. Flow .
Objective Cost Time
# (sec.) Front =095 | a=09 | a=085| a=05
3956 126 126 147 168 7
Cost
15674 420 425 426 444 6
13255 433 437 441 455 8
1 8.998 96 Flow
3956 18 18 18 21 1
, 3956 18 18 18 21 1
Time
10755 350 350 366 386 10
4924 160 160 160 180 10
Cost
30693 650 658 674 696 7
28902 658 672 679 706 7
2 21.412 388 Flow
4924 16 16 16 18
, 4924 16 16 16 18 1
Time
23406 643 651 658 711 10
Cost 4257 148 148 148 149 6
0S
50439 1443 1474 1483 1530 10
50439 1443 1474 1483 1530 10
3 50.653 519 Flow
4257 14 14 14 18 1
, 4257 14 14 14 18 1
Time
50439 1443 1474 1483 1530 10
6548 120 120 120 168
Cost
104283 1863 1881 1890 1944
1 96385 2080 2100 2113 2162 10
4 324.3 613 Flow 6651 17 17 17 18 1
. 6651 17 17 17 18 1
hiut 100626 2068 2085 2096 2160 10
37135 110 110 110 150 10
Cost 530071 690 702 708 732 6
436417 1070 1080 1090 1140 10
5 14627.943 413 /356 Flow 20066 3 3 ” s :
. 40066 13 13 14 15 1
Time 436417 1070 1080 1090 1140 10

TABLE 3 provides similar information for all test networks, when 70% of the arcs have
stochastic properties with large variance.
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TABLE 3 Algorithm Results for Various Possible Networks in which 70% of the Arcs are Stochastics
with Large Variance

Problem Run Time Size of Pareto .. Flow .
Objective Cost Time
# (sec.) Front =095 | a=09 | a=085| a=05
3956 170 182 187 200 7
Cost
15624 234 247 267 316 8
11413 235 248 258 327 9
1 8.998 96 Flow
6696 17 17 20 25 1
, 3956 21 21 21 26 1
Time
13913 230 234 247 303 10
4924 130 130 130 160 10
Cost
32661 488 488 488 571
23296 488 488 488 539
2 21.412 388 Flow 620 : : o o
. 4924 13 13 14 16 1
hiut 27565 479 488 500 558 10
4257 124 124 124 134 6
Cost 53718 1240 1273 1286 1402 10
45395 1271 1306 1314 1378 10
3 50.653 519 Flow o > > > 3 :
. 4257 24 24 24 24 1
Time 53718 1240 1273 1286 1402 10
6548 32 32 32 40
Cost
103379 1469 1494 1539 1611 9
1 100898 1607 1663 1687 1760 10
4 324.3 613 Flow 6548 10 10 10 18 1
. 6548 10 10 10 18 1
hiut 100898 1607 1663 1687 1760 10
37803 45 45 45 81 9
Cost
540351 810 837 846 900 9
540351 810 837 846 900 9
5 14627.943 413 /356 Flow 20890 3 3 3 < ;
. 39709 4 4 4 5 1
Time 479612 600 630 650 750 10

To better understand the effect of the chance constraint, the same networks were
redesigned, this time with 20% of the arcs have stochastic properties with small and large
variances. Information regarding these network is provided in TABLE 4 and TABLE 5.

Again, as can be seen from the result, using a chance constraint results with a solution in
which the flow is lower compared to the flow obtained for the same solution based on the
average flow. Compared to the networks in which 70% of the arcs are stochastics with small
variance, here there is a smaller change (sometimes there is no change at all) in F* when
choosing a = 0.95, « = 0.9 or = 0.85.
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TABLE 4 Algorithm Results for Various Possible Networks in which 20% of the Arcs are Stochastics
with Small Variance

Problem Run Time Size of Pareto .. Flow .
Objective Cost Time
# (sec.) Front «=095| a=09 | a=085| a=0.5
3956 133 133 133 168 7
Cost
15092 390 390 390 415 5
13255 452 452 452 470 8
! 9-659 88 Flow 3956 19 19 19 24 1
. 3956 19 19 19 24 1
Time 10755 440 440 450 450 10
4924 160 160 160 160 8
Cost
31804 712 712 712 720 6
1 23406 736 736 736 750 9
2 23418 389 Flow 4949 17 17 17 19 1
. 4924 20 20 20 20 1
hiut 22031 636 636 636 631 10
4257 150 150 150 150 6
Cost 53175 1572 1588 1598 1640 10
45827 1610 1610 1640 1660 10
3 59.529 597 Flow o >3 >3 >3 >3 :
. 4257 25 25 25 25 1
Time 53175 1572 1588 1598 1640 10
6548 150 150 150 150 10
(O 108971 2136 2145 2145 2190 9
96790 2250 2250 2250 2250 10
4 334.368 649 Flow 5% > > > 3 :
. 6548 20 20 20 23 1
hiut 99052 2090 2130 2130 2200 10
36912 24 24 24 34
Cost
495462 928 944 960 1000
479396 1250 1270 1270 1300 10
5 69591.502 375 Flow TR 2 3 3 o :
40060 18 18 18 20 1
Time
479396 1250 1270 1270 1300 10
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TABLE 5 Algorithm Results for Various Possible Networks in which 20% of the Arcs are
Stochastics with Large Variance

Problem Run Time Size of Pareto Objocive Cost Flow Time
# (sec.) Front =095 | a=09 | a=085| a=05

3956 133 133 133 168 7

Cost 15092 390 390 390 415 5

13255 452 452 452 470 8

! 9.048 86 Flow 3936 19 19 19 24 1
. 3956 6 6 6 1 1

Time 10755 274 291 310 381 10

4924 180 180 180 180

Cost 29391 646 646 646 679 7

20339 660 660 660 680 10

2 22233 339 Flow 910 = 3 3 > :
. 4924 20 20 20 20 1

Time 22714 605 605 605 662 10

4257 150 150 150 150 6

Cost 49241 1330 1330 1330 1460 10

46632 1390 1390 1390 1520 10

3 47.047 451 Flow 7729 o o o = 5
. 4257 25 25 25 25 1

Time 49241 1330 1330 1330 1460 10

6548 150 150 150 150 10

Cost 105495 2054 2067 2085 2166 9

102981 2210 2210 2210 2250 10

4 338.398 603 Flow o 3 3 3 3 :
. 6548 23 23 23 23 1

Time 104121 2148 2158 2158 2190 10

35949 65 65 65 90 5

Cost 541670 840 856 880 952 8

454292 1053 1071 1089 1143 9

5 14627.943 361 Flow TRET < c < 3 :
. 41378 6 6 6 12 1
Time 460086 900 930 940 1040 10

To summarize the importance of the chance constraint, the average change of the flow
(based on each Pareto set) was calculated for each problem, percentage of stochastic arcs,
variance level and o. For each Pareto set, the median solution was obtained, and its flow was
averaged across the set. Based on the average value, it is possible to calculate the percentage
change when increasing a. This analysis is presented in TABLE 6. For example, there is a
decrease of ~8% when increasing a from 0.50 to 0.85, for problem #1, 20% stochastic arcs,
and small variance. From the results it is evident that: 1) the use of the average value (0=0.50)
does not reflects the true nature of flow. 2) the higher the stochastic nature of the model, the
more apparent are the changes in the flow when increasing o.
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TABLE 6 Relative Difference Between Various Obtained Flows for the Various Test Networks

Problem Percent‘age of Small Variance Large Variance

# Stochastics Ares 0.50 vs. 0.85]0.85 vs. 0.90|0.90 vs. 0.95|0.50 vs. 0.85]0.85 vs. 0.90{0.90 vs. 0.95
20 -7.96 -0.89 -0.11 -41.36 -6.13 -6.04

1 70 -10.08 -2.07 -1.06 -22.29 -3.44 -4.69
20 -3.46 -0.35 -0.07 -8.04 -1.02 -0.42

? 70 -6.01 -0.86 -1.17 -23.39 -5.05 -5.52
20 -2.29 -0.33 -0.16 -7.65 -0.93 -0.58

’ 70 -6.56 -1.05 -1.34 -10.70 -2.53 -2.49
20 2.11 -0.29 -0.28 -2.94 -0.38 -0.25

¢ 70 -5.24 -0.98 -1.02 -10.30 -1.91 -2.27
20 -5.83 -0.82 -0.75 -19.50 -2.74 -3.09

: 70 -8.21 -1.43 -1.41 -31.91 -6.12 -5.70

CONCLUSIONS

Evacuation network design usually refer to network design and traffic assignment
problem. There are several different decisions that should be considered while developing
evacuation models: (1) Selection of Evacuation Routes, (2) Introduction of delay times and (3)
controlling the speed of evacuation. The effectiveness of an evacuation operation is dependent
on various factors, such as: (1) The availability of resources, (2) The risk of exposure to disaster
impact and (3) The vulnerability of different locations within the evacuation zone.

This study focuses on the development of' a model for the design of an optimal evacuation
network (selection of evacuations routes), which simultaneously minimizes construction costs,
flow, and evacuation time. The model takes into consideration infrastructures vulnerability of
the different arcs (as a stochastic function which is dependent on the event location and
magnitude), road network, transportation demand and evacuation areas.

The study presents a mathematic model for designing evacuation routes. however, since
the problem presented is both multi-objective and stochastic, and an optimal solution cannot
be found within a reasonable timeframe, a different solution approach is used. Since genetic
algorithms are suitable for solving both multi-objective optimization problems and stochastic
optimization problems, a heuristic model based on genetic algorithms, is used for solving the
evacuation problem. In order to simplify the algorithm’s implementation, MOEA framework
(31) has been used.

In order to test the algorithm, several networks, in which 20%, and 70% of the arcs have
stochastic properties (with small and large variance), were created. The results of the algorithm
are Pareto sets with non-dominated solutions. The results show a positive correlation between
cost and flow - an increase in cost allows the construction of a network with higher flow. A
positive correlation also exists between the flow and evacuation time, meaning that as the flow
increases, the evacuation time increases as well.

The results also show that as the problem increases in size (a higher number of stochastics
arcs), there is a higher difference in the results of the various test networks when comparing a
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network with a small variance in the stochastics arc against the same network but with a large
variance in the stochastics arc. This difference has also been demonstrated using a single
possible solution in three various scenarios: (1) all arcs have deterministic capacities, (2) all
arcs are stochastics, with small variance, and (3) all arcs are stochastic with large variance.

Finally, using a chance constraint results with a solution in which the flow is lower
compared to the flow obtained for the same solution based on the average flow, meaning that
in order to construct a network having a given cost and an evacuation time, it is necessary to
consider a flow F*, which is lower than the average flow. The F* should be chosen such that
in a percent of the cases the obtained flow will be equal or higher than F*. This guaranties that
in a percent of the cases the evacuation time will be held (and even may be shorter). The results
show that when 20% of the arcs are stochastics with small variance, there is a small change
(and sometimes no change at all) in F* when choosing @ = 0.95, ¢ = 0.9 or @ = 0.85. A larger
change exists when the variance is large. To better understand the effect of the chance
constraint, the same networks were redesigned, this time with 70% of the arcs have stochastic
properties with small and large variances. Compared to the previous networks, here there is a
larger change (although sometimes there is no change at all) in F* when choosing a = 0.95,
a = 0.9 or a = 0.85. This change gets higher when the variance is large.

A future work is the possibility of analyzing and predicting the impact of different
evacuation scenarios and procedures in real-time, which can be incorporated into the model.
This is one of the most important future applications for evacuation modelling, which is
extremely relevant for the decision-making process during an actual emergency.
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