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ABSTRACT 
Vehicle-routing problems (VRP) have been studied in depth. While traditional VRPs 
have been thoroughly studied, limited research has to date been devoted to multi-
objective, real-time management of vehicles. In this paper a real-time multi-objective 
VRP is presented and mathematically formulated. Using four case studies, based on 
two real-world transportation networks (urban and interurban); the result of an 
improved VEGA algorithms, are tested and compared in various situations. It was 
shown that the results obtained when information such as customers' demands and 
travel time, is unknown, are as good as to the results of the algorithm when all 
information is known in advance. 

 
Key words: Vehicle routing problem; Real-Time; Multi-Objective; Case Study 

INTRODUCTION 
The Vehicle Routing Problem (VRP) is one of the most important and widely studied 
combinatorial optimization problems, with many real-world applications in 
distribution and transportation logistics (1). In the standard VRP (also known as the 
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Capacitated VRP – CVRP), vehicles start their routes at a depot, call at customers, to 
whom they deliver goods, and return to the depot, with an objective of finding the 
lowest-cost set of routes, usually shortest routes. Traditionally, vehicle routing plans 
are based on deterministic information about demands, vehicle locations and travel 
times on the roads. What is likely to distinguish most VRPs today from equivalent 
problems in the past, is that information that is needed to come up with a set of good 
vehicle routes and schedules is dynamically revealed to the decision maker (2). Until 
recently, the cost of obtaining real-time traffic information was deemed too high in 
comparison with the benefits of real time control of the vehicles. Furthermore, some 
of the information needed for real time routing was impossible to acquire. 
Advancement of the technology make it possible to operate vehicles using the real-
time information about travel times and the vehicles' locations (3). 

Moreover, VRPs, which are frequently used to model real cases, are often set up 
with the single objective of minimizing the cost of the solution, despite the fact that 
the majority of the problems encountered in industry, particularly in logistics, are 
multi-objective in nature. In real-life, for instance, there may be several costs 
associated with a single tour. Moreover, the objectives may not always be limited to 
cost. In fact, numerous other aspects, such as balancing workloads (time, distance ...), 
can be taken into account simply by adding new objectives (4). 

While traditional VRPs have been thoroughly studied, limited research has to date 
been devoted to multi-objective, real-time management of vehicles during the actual 
execution of the distribution schedule, in order to respond to unforeseen events that 
often occur and may deteriorate the effectiveness of the predefined and static routing 
decisions. Furthermore, in cases when traveling time is a crucial factor, ignoring 
travel time fluctuations (due to various factors, such as peak hour traveling time, 
accidents, weather conditions, etc.) can result in route plans that can take the vehicles 
into congested urban traffic conditions. Considering time-dependent travel times as 
well as information regarding demands that arise in real time in solving VRPs can 
reduce the costs of ignoring the changing environment (5). 

The rest of the paper is as follow. Section 2 provides a review on both multi-
objective and dynamic VRPs. Section 3 provides a mathematical formulation of the 
problem described in this paper. Section 4 describes three evolutionary algorithms 
later used for solving the problem described in section 3.  The results of four case 
studies are described in section 5. Finally, Section 6 concludes the paper. 

LITERATURE REVIEW 

Multi-Objective VRP 
VRPs are frequently used to model real cases. However, they are often set up with the 
single objective of minimizing the cost of the solution, although the majority of the 
problems encountered in industry, particularly in logistics, are multi-objective in 
nature. Multi-objective VRPs are used mainly in three ways: 1) Extending classic 
academic problems – Multi-objective optimization is one possible way to study 
objectives other than the one initially defined. In this context, the problem definition 
remains unchanged, and new objectives are added. As an example of such an 
objective, we can consider the following: (1) Driver workload – an extension to VRP 
in which the balance of tour lengths is considered (to increase the fairness of the 
solution) (6-8). (2) Customer Satisfaction – an objective added to VRP with time 
windows in order to improve customer satisfaction with regard to delivery dates (9). 
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2) Generalizing Classic Problems – Another way to use multi-objective optimization 
is to generalize a problem by adding objectives instead of one or several constraints 
and/or parameters (10-14). 3) Studying real-life cases - Multi-objective routing 
problems are also studied for a specific real-life situation, in which decision makers 
define several clear objectives that they would like to see optimized (15-19). 

Most Common Objectives 

The different objectives studied in the literature can be presented and classified 
according to the component of the problem with which they are associated. The 
following is a summary of the most common objectives. 1) Objectives related to the 
tour: (a) Cost: Minimizing the cost of the solutions generated is the most common 
objective, usually for economical reasons; however, other motivations are possible. 
For instance, in (20, 21), it is done to avoid damaging the product being transported. 
(b) Makespan: Minimizing the makespan ensures some fairness in solutions (16, 22, 
23) (c) Balance: Some objectives are designed to even out disparities between the 
tours (6, 24). 2) Objectives related to node/arc activity: Most of the studies dealing 
with objectives related to node/arc activity involve time windows. Time windows are 
usually replaced by an objective that minimizes the number of violated constraints 
(13), the total customer and/or driver’s wait time due to earliness or lateness (10, 11, 
25), or both (26, 27). 3) Objectives related to resources: A common objective is the 
minimization of the number of vehicles, as in VRP with time windows (usually 
treated lexicographically) (28). Goods-related objectives are used to take the nature of 
the goods into account (merchandise is perishable and we want to avoid its 
deterioration (20, 21)).  

Multi-Objective Optimization Algorithms 

Over the last several years, many techniques have been proposed for solving multi-
objective problems. These strategies can be divided into three general categories: 1) 
Scalar methods - The most popular is weighted linear aggregation. For multi-
objective VRPs, weighted linear aggregation has been used with specific heuristics (5, 
29), local search algorithms (30), and genetic algorithms (12). 2) Pareto methods - 
Pareto methods use the notion of Pareto dominance directly. Pareto methods are used 
with evolutionary algorithms, local searches, heuristics, and/or exact methods (31, 
32). 3) Methods that belong to neither the first nor the second category - These 
non-scalar and non-Pareto methods are based on genetic algorithms, lexicographic 
strategies, ant colony mechanisms, or specific heuristics (33, 34).  

Dynamic VRP 
In many real-life applications relevant data changes during the execution of 
transportation processes and schedules have to be updated dynamically. Thanks to 
recent advances in information and communication technologies, vehicle fleets can 
now be managed in real-time. In this context, Dynamic or real-time VRPs (DVRPs), 
are becoming increasingly important (2, 35-37). The most common source of 
dynamism in VRP is the online arrival of customer requests during the operation (38-
40).  In order to consider travel time variations, different approaches have been 
developed (5, 41, 42). Malandraki and Daskin (43) used a step function to represent 
time-dependent issue and develop a heuristic approach. Stochastic VRP (SVRP) has 
been proposed to consider such travel time variations (44-48). Due to the difficulties 
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of capturing the variation of travel time in a traffic network, simulation models have 
been used to generate realistic travel time and applied in different routing strategies.  

According to Laporte, Gendreau (49), the tabu search heuristics have proved to be 
the most successful meta-heuristic approach. A number of researchers have applied 
the tabu search algorithm on VRP (50, 51). 

Finally, some recent work considers dynamically revealed demands for a set of 
known customers (52-55) and vehicle availability (56-58), in which case the source of 
dynamism is the possible breakdown of vehicles. In the following we use the prefix 
‘‘D-’’ to label problems in which new requests appear dynamically. 

Problem Formulation 
This chapter provides a mathematical formulation to the real-time multi-objective 

VRP. Since VRP is a hard optimization problem (59), the complexity of the problem 
will remain the same as CVRP, at least, because of the time dimension and the 
stochastic properties of the problem.  

 
In the proposed formulation, the following notations are used. 
 

V Set of nodes, including the depot and the demand nodes 
E Set of edges 
N Number of customers (customer number 0 denotes the depot) 

t
id  Demand of demand node i requested at time t. 
t
iD  The total demand of customer i at time t . t

iD  is defined as 
1

0 0 1 1 0

S St tN N M
t t mt
i j ij

t i j m t
d d x

−

= = = = =

−∑ ∑∑∑∑ , which means that the demand of a customer equals 

the sum of all customers’ demands received between time interval of 0t =  to 
time St t=  minus the demands that already have been served. For customer 0, 
which is the depot, 0St

id =  for all St . 
mt
ijx  A decision variable, defined as 1 if vehicle m traveled from node i to node j at 

time t. where st t≥ , and 0, otherwise. 
mt

ijx  Known decision variable, defined as 1 if vehicle m traveled from node i to 
node j at time t. where st t< , and 0, otherwise. 

St  Time of routing plan. The time of routing plan can start at 0st =  and end at 

St T= . 
t
ijC  A stochastic time-dependent nonnegative cost function, which represents the 

travel cost from vertex i to vertex j starting at time t. 
ˆt

ijc  Estimated travel cost from vertex i to vertex j starting at time t. 
t

ijc  Known cost for traveling from node i to node j at time t, where st t<  
M The maximum number of vehicles available 
Q capacity of a vehicle (all vehicles have the same capacity) 

m
St  The last departure time of vehicle m from the depot. m

St  is defined as 

{ }max 0,..., S
m
St t t∈=  which satisfies 0

0
1

N
mt

j
j

x
=

=∑ , and there is no { }0,. .,ˆ . St t∈ , 
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such that t̂ t>  and ˆ
0

0
1

N
mt
j

j
x

=

=∑ . If such m
St  does not exist, then m

S St t= . 

St
iv  Does a customer require a visit at time St . St

iv  is defined as 

1 0
0

S
S

t
t i
i

d
v

otherwise
 >= 


. 

S
iTW  Start of time window of customer i 
E

iTW  End of time window of customer i 

iEET  Endurable earliness time - the earliest service time that customer i can endure 
when a service starts earlier than S

iTW .  

iELT  Endurable lateness time - the latest service time that customer i can endure 
when a service starts later than E

iTW  . 

iST   Service time at customer i. 

iST   Known service time at customer i. 

iWT   Waiting time at customer i. 

iWT   Known waiting time at customer i. 
 
Let ( ),G V E=  be a complete graph, where { }0,...,V n=  is the nodes set and E is 

the edge set. Each node { }\ 0i V∈  represents a customer (where N is the number of 
nodes), having a non-negative demand, whereas node 0 represents the depot. Each 
edge ( ){ }, : , ,E i j i j V i je∈ = ∈ <  is associated with a stochastic time-dependent 

nonnegative cost, t
ijc , which represents the travel time spent to go from node i to 

node j starting at time t. The use of the loop edges, ( ),i i , is not allowed. A fixed fleet 
of M identical vehicles, each of capacity Q, is available at the depot.  

The travel time cost function, t
ijc , is stochastic in nature, meaning that it may vary 

from one day to another. The cost function, t
ijc , is associated with a mean, ( )t

ijc and 

a standard deviation, ( )t
ijcσ . As an estimation of t

ijc  the mean ( )t
ijc  can be used. In 

this case, the total travel time of the route will not reflect the possibility of arriving at 
a customer earlier or later than expected, and the changes in travel time it may cause. 
Therefore, a different estimation of the stochastic cost function, t

ijc , is suggested. 
Using the concept of relative standard deviation (coefficient of variation) (60), let 

( ) ( )
( )

'

''
max

t
ij

tt t
ij

c
t t

c

σ
≤

= ⋅


, the maximum relative standard deviation for of all time 

intervals prior and including t, multiplied by t ,be an impact factor, which defines how 
much the value of t

ijc  is affected by possible changes in travel time (compared to the 
mean) in previous and future time intervals. The estimation of the stochastic cost 

function, ˆt
ijc , is defined as 

( ) ( )
( )

( )
ˆ

ˆ

1ˆ
2 1

t t
t t
ij ij

t t t

c c
t

+  

= −  

=
+ ∑ 




. In this definition ˆt

ijc  equals to 

an average of expected values of t
ijc  over several time intervals defined by the impact 

factor, thereby taking into consideration the possibility of being early or late.  
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Based on the notation of ˆt

ijc , the real-time multi-objective VRP can be defined as a 
mixed integer linear programming module.  

 
The objective of the mixed integer programming are: 
 

( )

( )

1

0 0 1 0

0 0 1

min max ,

ˆmax ,

S

S

tN N M
t S mt

j jij j ij
i j m t

N N M T
t S mt
ij j j j ij

i j m t t

Z c TW t

c TW t ST WT

ST W x

x

T
−

= = = =

= = = =

 = − + + + 

 + − + + 

∑∑∑∑

∑∑∑∑
            (3.1) 

1

0 0
1 1 0 1 1

min
s

s

t tN M N M T
mt mt

j j
j m t j m t t

Z x x
= −

= = = = = =

= +∑∑ ∑ ∑∑∑                (3.2) 

( )( ) ( )( )
1

0 0 1 0

ˆmin
S

S

mt mt
i ji ji

tn N M T
t t

i ji ij
i j m t t t

xt c xZ S t cσ
−

= = = = =

  
= + + +     
∑ ∑∑ ∑ ∑             (3.3) 

( ) ( )
1

0 1 0

ˆ
S

S

mt mt
ji j

tN M T
t t

m ji ij
m t t

i
j t

w c x c x
−

= = = =

 
= +  

 
∑∑ ∑ ∑                (3.4) 

{ }

2
2

1 1min min

M M

m m
m m

w w
StdDev Z

M M
= =

      = = − 
      

∑ ∑
               (3.5) 

( )0 ,n ,mi : 1mt
iZ M iax t M Tx N m t∀ ∈ ∈= ∈=                (3.6) 

 
and the constraints are: 
 

, ,0mt
ii i Mx N m t T∀ ∈ ∈ ∈=                 (3.7) 

1

0 0
1

1
S

m
SS

tN T
mt mt

j j
j t tt t

x x m M
−

= ==

 
+  


≤ ∈


∀∑ ∑ ∑                 (3.8) 

1

0 0 0
1 1

S

m
S SS

tN T N T
mt mt mt

j j i
j t t i t tt t

m Mx x x
−

= = = ==

 
+ =  ∀ ∈

 
∑ ∑ ∑ ∑∑               (3.9) 

1

0 1
,

S
S

m
SS

tN M T
tmt mt

ij ij j
i m t tt t

j N i jx x v
−

= = ==

 
+ = ∀ ∈ ≠

 
∑∑ ∑ ∑             (3.10) 

 
1

0 1
,

S
S

m
SS

tN M T
tmt mt

ij ij i
j m t tt t

i N i jx x v
−

= = ==

 
+ =  ∀ ∈

 
≠∑∑ ∑ ∑             (3.11) 

 

0 0

S

S

N N T
t mt
i ij

i j t t
Q m Md x

= = =

  
    

∈

≤


∀∑ ∑∑              (3.12) 
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( ) ( )

( )( )( )

( )( )( )

1

0 1

1

0 1

max ,

ˆmax
0 0

,
,

S

m
SS

S

m
S

S

tN M T

k m t tt t

t
t S

j jij jN M
t t

T
j m t S

ij j j j

mt mt
jk jk

mt
ij

mt

t
j

t
i

t t

t c TW t

t c TW

x x

t ST W

ST x
j

xT

WT
i

−

= = ==

−

=

= =

=

 
+  

 
 

+ − + + + 
 
 
 + + − + + 

× × ≥

×

∀ > >
×

 

∑∑ ∑ ∑

∑
∑∑

∑

         (3.13) 

 
1 1

0 0
0 , , 0

S S

m m
S SS S

t tN T N T
mt mt mt mt

ip ip pj pj
i t t j t tt t t t

m M p N px x x x
− −

= = = == =

   
+ − + =     ∀ ∈ 

   
∈ ≠∑ ∑ ∑ ∑ ∑ ∑  (3.14) 

 

0 0 1

*
1

ˆ
S

m
SS

tN N M T
t mt t mt

ij ij ij ij
i j m t tt t

P x c xc c α
−

= = = ==

   
 +        

≤ ≥∑∑∑ ∑ ∑             (3.15) 

 
{ }0,1 , , ,mt

ij m V i N tx j T∈ ∀ ∈ ∈ ∈                 (3.16) 
 
Five objective functions are considered in this model. The first objective is 

minimizing the total travel time. If by leaving node i at time t a vehicle reaches node j 
before its time window's start time, meaning ˆt S

ij jt c TW+ < , then the vehicle has to 
wait until the beginning of the time window in order to start serving. Otherwise, it 
starts serving upon arrival. Therefore, the time passed since a vehicle left node i 
towards node j and the time it left node j can be defined as 

( )ˆmax ,t S
ij j j jc TW t ST WT− + + . By summing all possible true travel times (for whom 

the decision variable mt
ijx  is equal to 1), we get the total travel time, which is to be 

minimized. 
The total travel time can be decomposed into two parts, the known travel time and 

the unknown travel time. If the planning time, st , is not equal to 0, then we are not at 
the beginning of the day, and some vehicles have already been sent to customers. In 
this case, the total traveling cost is the sum of the known traveling cost and the 
unknown traveling cost, as defined in defined in equation (3.1).  

 
The second objective function concerns the total number of vehicles used, which is 

defined in equation (3.2), as the number of vehicle leaving the depot.  
 
VRP with Time Windows (VRPTW) is an important extension of the CVRP in 

which service at every customer i must start within a given time window [ ],i ia b  . A 
vehicle is allowed to arrive before ia  and wait until the customer becomes available, 
but arrivals after ib  are prohibited. This problem is known as VRPTW with hard time 
windows. In other cases, both lower and upper bounds of the time window need not 
be satisfied, but can be violated at a penalty. These are Vehicle Routing Problems 
with Soft Time Windows (1).  

For VRPTW with soft time windows, when a customer is served within his time 
window, the supplier’s service level is satisfactory; otherwise, it is not. Hence, a 
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customer’s satisfaction level can be described using a binary variable, which takes 1 if 
the service time falls within the specified time window, and 0 if it does not.   

Time windows may sometimes be violated for economic and operational reasons. 
However, there exist certain bounds on the violation that a customer can endure. 
Earliness and lateness are closely related to the quality of service. The response of a 
customer satisfaction level to a given service time may not be simply “good” or 
“bad”; instead, it may be between “good” and “bad”. For example, the customer 
might say, “it’s all right” to be served within , S

i iEET TW    or ,E
i iTW ELT   . In either 

case, the service level cannot be described by only two states (0 or 1). 
Intuitively, with the concepts of iEET  and iELT , the supplier’s service level for 

each customer can be described by a fuzzy membership function: 
 

( )
( )

1,
(

0,
,

),
0,

S
i

S E
i i

i

ii

E
i i

i

i

i

t TW
T

t EET
EETf
W t TW

g t TW t ELT
EL

t
S t

T t

<


= 

≤ <

≤ <

≤ <
≤





                  (3.17) 

 
Since customer’s satisfaction level, as a function of the deviation from the 

customer’s time window, in most cases cannot be described as a linear function, the 
following function is used to describes customer's satisfaction. 

 

( ) 1

1

in
i

S
j i i

i n

j

j
i

j
i

t EET
TW EET

f t

α

β

β

=

=

 −
 − =

∑

∑
                  (3.18) 

 

1

1

( )

im

E
j i

i

j
i

j
i

m

j

ELT t
ELT TW

g t

γ

δ

δ

=

=

 −
 − =

∑

∑
                  (3.19) 

 
Assuming that each customer has his own satisfaction function, ( )iS t , and that the 

service provider assigns an importance factor, iσ , to each customer that states how 
important it is to satisfy customer i compared to all other customers, the third 
objective function, maximizing customers’ satisfaction, is defined as in equation (3.3). 

The fourth objective function, seeks to balance the work, defined as the total travel 
time the vehicle had in a single day, between vehicles. This is achieved by minimizing 
the standard deviation of the work of each vehicle at the end of the period, as defined 
in equations (3.4) and (3.5).  

 
The fifth and last objective function considered is minimizing the arrival time of the 

last vehicle, as defined in (3.6). Each vehicle starts its route and ends its route at the 
depot. While the start time of each vehicle is known, the end time is unknown and is 
due to change, mainly because of the stochastic nature of the travel time.  
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By minimizing the arrival time of the last vehicle, we guarantee two things: (1) 

Maximum availability of vehicle for unscheduled deliveries and (2) that there are no 
too long routes. 

Next, the various constraints are defined. Equation (3.7) states that a vehicle cannot 
drive from one node to itself. Equation (3.8) states that all vehicles start their routes at 
the depot. Similarly, all vehicles end their routes at the depot, as defined in equation 
(3.9). Equations (3.10) and (3.11) ensure that all customers require a visit, are visited 
exactly once, while all other customers are not visited at all.  

A demand constraint, stating that the total demand of all customers visited by the 
same vehicle must be less than or equal to the capacity of the vehicle, is defined by 
equation (3.12). 

If node j is visited after visiting node i, then the departure time, t, from node j is 
equal to or greater than the departure time from node i plus the travel time from node i 
to node j at time t plus the service time and waiting time at node j as defined in 
equation (3.13). Another route continuity constraint, defined by equation (3.14), states 
that a vehicle, visiting node i, that leaves node p and a vehicle visiting node p, that 
leaves to node j, is the same vehicle. 

Equation (3.15), a chance constraint, states that we are looking for a set of routes, 
that for a given probability, α, the traveling time will not be higher than *c . A set of 
possible traveling times, *Z  can be created by solving the relaxed deterministic linear 
programming (in which all stochastic functions are randomly replaced with a 
corresponding values) a large number of times (each time using a different instance of 
the cost function). From this set, ( )*' minZ Z Z∈=  can be chosen, which satisfies 

( )( )* 'ZZ ZP α∈ ≤ ≥  as *c . 

Finally, the last constraint, defined by equation (3.16), states that the decision 
variable, mt

ijx , is a binary variable. 

EVOLUTIONARY ALGORITHMS FOR SOLVING REAL-
TIME MULTI-OBJECTIVE VRP 

Evolutionary Algorithms 
In real-time dynamic problems a solution is given based on known data, as time 

progresses, new data are added to the problem and the initial solution has to be re-
evaluated in order to suite the new data. This is usually done at a pre-defined time 
intervals. If the time intervals are small enough, thus, at each time interval the amount 
of information added is limited. Therefore, the new solution will be similar to the 
previous one. The proposed mixed integer programming can hander real-time 
information, by re-solving the problem whenever new information becomes available. 
However, due to the complexity of the process, meta-heuristics are better suitable for 
this process. Such meta-heuristics are Evolutionary Algorithms (EA) that belong to 
the Evolutionary Computation field of study concerned with computational methods 
inspired by the process and mechanisms of biological evolution.  

Evolutionary algorithms are well suitable for solving this kind of problems, since the 
previous solution can be considered as an initial solution for the updated problem, 
while there is no need to start the calculation of the new routes from the beginning. It 
should be noted, that a population might altered as a response to new information. For 
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example,  if  a  new  request  is  added  to  the  problem,  then  the  new  customer  has  
to  bee added each chromosome of the previous population. 

Genetic Algorithms 

Genetic Algorithms (61, 62) are computational models inspired by evolution. These 
algorithms encode a potential solution to a specific problem on a simple chromosome-
like data structure and apply recombination operators to these structures in order to 
preserve critical information. Genetic algorithms begin with a population of (random) 
chromosomes. One then evaluates these structures, using a fitness function, and 
allocated reproductive opportunities, to create a new population, such that 
chromosomes which represent a better solution are given more chances to 
‘reproduce’. The new population is further evaluated and tested until termination. In 
this study, two multi-objective Genetic algorithms are used, VEGA and SPEA2. 
 
VEGA  The Vector Evaluated Genetic Algorithm (VEGA), proposed by David 
Schaffer (63, 64), is normally considered the first implementation of a multi-objective 
EA (MOEA). In VEGA, for a problem of size PopSize, with NumObj objectives, 
NumObj sub-populations of size PopSize/NumObj are created, each uses only one 
objective functions for fitness assignment. These sub-populations are then shuffled 
together to obtain a new population of size PopSize, on which the GA would apply the 
crossover and mutation operators in the usual way. Elitism guarantees that best 
solutions found in each iteration are passed on to the next iteration and not lost. The 
original VEGA algorithm does not use elitism. In this paper an Improved VEGA 
algorithms, that uses elitism, is used. In the improved VEGA algorithm, the set of 
high performance solutions is defined as the set of non-dominated solutions (65) 
obtained in all iterations of the algorithm.  
 
Strength Pareto Evolutionary Algorithm: SPEA2  SPEA2 in an elitist multi-
objective EA. It is an improved version of the SPEA algorithm (66), and incorporates 
a fine-grained fitness assignment scenario, a density estimation technique, and an 
enhanced archive truncation method. SPEA2 operates with a population (archive) of 
fixed size, from which promising candidates are drawn as parents of the next 
generation. The resulting offspring then compete with the old ones for inclusion in the 
population. 

Artificial Bee Colony 

Artificial bee colony (ABC) algorithms (67, 68) is a new evolutionary meta-heuristic 
technique inspired by the intelligent behavior of natural honey bees in their search for 
nectar. The ABC algorithm is an iterative algorithm. It starts by assigning each 
employed bee (bees that are exploiting a food source) to a randomly generated 
solution (food source). In each iteration, each employed bee, using a neighborhood 
operator, finds a new food source near its assigned food source, which replaces the 
original food source, if it's better. Next, information of the food sources is shared with 
the onlookers (bees that are waiting in the hive). The onlooker chooses a food source, 
using proportion selection, then, using a neighborhood operator, each onlooker finds a 
food source near its selected food source. For each old food source, the best food 
source among all the food sources near the old one is determined. The employed bee 
associated with the old food source is assigned to the best food source and abandons 
the old one if the best food source is better than the old food source. A food source is 
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also abandoned if the quality of the food source has not improved for a predetermined 
and limited number of successive iterations. The employed bees then become scouts 
(bees that are searching for new food sources in the neighborhood of the hive) and 
randomly search for new food source. After a scout finds a new food source, it 
becomes an employed bee again. After each employed bee is assigned to a food 
source, another iteration of the ABC algorithm begins. The iterative process is 
repeated until a stopping condition is met. Since ABC algorithms share common 
characteristics with GAs, simple modifications made to the basic GAs can be adopted 
and applied to ABC algorithms. The improved vector evaluated genetic algorithm, 
described earlier in this chapter, is such an example. 

EXPERIMENTAL RESULTS 
In a previous work (69), the results of the three algorithms were compared using a 
case study. The case study is based on two networks that are based on a real-world 
transportation network, including the locations of the depot, the customers and 
information about travel time between the different customers. The case study was 
performed using simulation. It was showed that the VEGA algorithm, when used, can 
provide solutions equal in quality to the solutions obtained from more sophisticated 
and more recent algorithms. In this paper, the results of the improved VEGA 
algorithm are examined in various situations, each with different information 
available. 

Network 
Two transportation networks, based on Israel’s road network, each includes real-life 
information with different characteristics, were generated. The first network is based 
on the greater Tel-Aviv metropolitan area’s urban road network, and includes 45 
customers, based on the store's locations of a large super-market chain store. The 
second network is based on Israel's interurban road network, and includes 34 
customers, based on major cities in Israel. For both networks, using “Google Maps”, 
the shortest distance and traveling time for different times of the day, between every 
two customers were found. Based on the data collected, a log-normal travel-time 
distribution function was calculated for each path (70). Each customer is also 
associated with a randomly generated time window, which is based on the average 
traveling time from the depot to the customer. Similarly, each customer is associated 
with a randomly generated demand, in the range of 10 to 50, similar to the demands 
used in Solomon's instances. 

In each test problem, half of the customers are considered as customers with 
unknown demands. These are the customers with the latest time window start time. 
Each unknown demand is revealed to the simulation at least two hours before the 
beginning of the time window. 

Scenarios 
In all four case studies, five scenarios for constructing the routing plan are considered. 
1. In the first scenario, information about customers’ demands and traveling time, is 

known in advanced. Using this information, the algorithm runs for a pre-defined 
period of time, after that, using the TOPSIS  (71) mechanism, a set of routes is 
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selected from the set of non-dominated solutions found by the algorithm. All 
vehicles follow this set of routes. 

2. In the second scenario, as in the first, information about customers’ demands and 
traveling time, is known in advanced. Using this information, the algorithm runs 
for a pre-defined period of time, after that, using the TOPSIS mechanism, a set of 
routes is selected from the set of non-dominated solutions found by the algorithm. 
All vehicles follow this set of routes. Vehicles start driving according to this set of 
routes, while the algorithm continues to run. Whenever a vehicle arrives at a 
customer, the customer is removed from all solutions evolved by the algorithm. 
Whenever a vehicle has to leave a customer and drive to the next customer (or the 
depot), or at pre-defined time intervals, using the TOPSIS mechanism, a new set 
of routes is selected from the set of non-dominated solutions found by the 
algorithm. Driving vehicles are then rerouted according to the new set of routes, 
and new vehicles are assigned as needed. This operation is repeated until all 
customers have been served, and all vehicles have returned to the depot. 

3. The third scenario is similar to the second scenario; however, traveling time is 
unknown. Traveling time information for the next pre-defined time period is 
revealed to the algorithm at pre-defined intervals. 

4. The fourth scenario is similar to the second scenario; however, demands of some 
of the customers are known. Information about new customers’ demands are 
revealed to the algorithm, while it run, which, accordingly adds the new customers 
to the evolved solutions. 

5. The fifth scenario is a combination of the third and fourth scenarios, in which 
neither customers’ demands nor traveling times are known in advance.  

Case Studies 
Four case studies were performed. For the first and second case studies the network 
used was of the greater Tel-Aviv metropolitan area transportation network. As for the 
dissatisfaction function, for the first case study it is assumed that the dissatisfaction 

functions of all customers are linear, meaning ( )
1

1 i
i S

i i

t EETf t
TW EET
 −

= −  − 
 and 

1

( ) 1i E
i

ELT tg t
ELT TW

 −
= −  − 

. For the second case study it is assumed that all customers 

dislike it when the supplier is either early or late. Therefore, the dissatisfaction 

functions of all customers are in the form of ( )
5

1 i
i S

i i

t EETf t
TW EET
 −

= −  − 
 and 

5

( ) 1i E
i

ELT tg t
ELT TW

 −
= −  − 

.  

For the third and fourth case studies the network used was of Israel's transportation 
network. As for the dissatisfaction function, for the third case study it is assumed that 
the dissatisfaction functions of all customers are linear, as in the first case study. For 
the second case study it is assumed that all customers dislike it when the supplier is 
either early or late, as in the second case study. 

All test scenarios were solved 200 times. In the first 100 times, it is assumed that all 
customers have the same priority. In the next 100 times, it is assumed that each 
customer has a priority equal to its demand.  
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Scenarios Comparison 

For each case study, the results of the various scenarios were compared, using paired-
samples t-tests. The results are summarized in TABLE 1 to TABLE 4. 
 

TABLE 1 PAIRED T-TEST RESULTS FOR COMPARISON OF VARIOUS 
SCENARIOS USING THE FIRST CASE STUDY 

Customer's 
Priority 

Objective 
Function 

Scenario 1 Scenario 2 t df Sig. M SD M SD 

The Same 

1 49.698 1.761 58.195 1.283 -11.11 99 0 
2 10.4 0.699 19.6 2.066 -11.5 99 0 
3 0.683 0.216 0.308 0.078 7.122 99 0 
4 1.997 0.765 0.099 0.102 8.714 99 0 
5 14.398 0.337 12.925 0.258 9.777 99 0 

Different 

1 49.632 1.633 58.188 2.971 -7.479 99 0 
2 10.2 0.422 21.2 2.781 -12.473 99 0 
3 0.642 0.076 0.224 0.059 12.921 99 0 
4 58.791 15.77 3.122 1.842 10.483 99 0 
5 14.717 0.546 12.827 0.182 11.32 99 0 

Customer's 
Priority 

Objective 
Function 

Scenario 1 Scenario 3 t df Sig. M SD M SD 

The Same 

1 49.698 1.761 55.778 2.121 -6.687 99 0 
2 10.4 0.699 26.6 5.211 -9.191 99 0 
3 0.683 0.216 0.172 0.248 7.035 99 0 
4 1.997 0.765 0.074 0.056 7.726 99 0 
5 14.398 0.337 12.523 0.351 12.249 99 0 

Different 

1 49.632 1.633 53.755 2.162 -4.802 99 0.001 
2 10.2 0.422 25.8 3.36 -13.601 99 0 
3 0.642 0.076 0.119 0.044 17.22 99 0 
4 58.791 15.77 4.699 3.17 10.721 99 0 
5 14.717 0.546 12.697 0.331 10.764 99 0 

Customer's 
Priority 

Objective 
Function 

Scenario 2 Scenario 3 t df Sig. M SD M SD 

The Same 

1 58.195 1.283 55.778 2.121 2.418 99 0.039 
2 19.6 2.066 26.6 5.211 -4.323 99 0.002 
3 0.308 0.078 0.172 0.248 2.048 99 0.071 
4 0.099 0.102 0.074 0.056 0.598 99 0.564 
5 12.925 0.258 12.523 0.351 3.472 99 0.007 

Different 

1 58.188 2.971 53.755 2.162 3.505 99 0.007 
2 21.2 2.781 25.8 3.36 -3.052 99 0.014 
3 0.224 0.059 0.119 0.044 3.721 99 0.005 
4 3.122 1.842 4.699 3.17 -1.131 99 0.287 
5 12.827 0.182 12.697 0.331 1.164 99 0.274 

Customer's 
Priority 

Objective 
Function 

Scenario 2 Scenario 4 t df Sig. M SD M SD 

The Same 

1 58.195 1.283 60.557 2.857 -3.281 99 0.01 
2 19.6 2.066 21.2 2.7 -1.5 99 0.168 
3 0.308 0.078 0.273 0.11 0.814 99 0.436 
4 0.099 0.102 0.17 0.103 -1.255 99 0.241 
5 12.925 0.258 12.695 0.321 2.053 99 0.07 

Different 

1 58.188 2.971 53.122 17.288 0.905 99 0.389 
2 21.2 2.781 19.8 6.161 0.593 99 0.568 
3 0.224 0.059 0.246 0.104 -0.562 99 0.588 
4 3.122 1.842 2.762 2.023 0.465 99 0.653 
5 12.827 0.182 12.487 1.197 0.912 99 0.386 

Customer's 
Priority 

Objective 
Function 

Scenario 3 Scenario 5 t df Sig. M SD M SD 

The Same 

1 55.778 2.121 56.898 1.861 -1.124 99 0.29 
2 26.6 5.211 29.5 2.321 -1.653 99 0.133 
3 0.172 0.248 0.083 0.016 1.148 99 0.281 
4 0.074 0.056 0.051 0.02 1.233 99 0.249 
5 12.523 0.351 12.283 0.276 1.654 99 0.132 

Different 

1 53.755 2.162 51.951 4.182 1.285 99 0.231 
2 25.8 3.36 24.2 3.938 1.037 99 0.327 
3 0.119 0.044 0.133 0.04 -0.757 99 0.469 
4 4.699 3.17 7.515 9.936 -0.93 99 0.377 
5 12.697 0.331 12.768 0.542 -0.319 99 0.757 
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TABLE 2 PAIRED T-TEST RESULTS FOR COMPARISON OF VARIOUS 
SCENARIOS USING THE SECOND CASE STUDY 

Customer’s 
Priority 

Objective 
Function 

Scenario 1 Scenario 2 t df Sig. M SD M SD 

The Same 

1 49.47 2.094 57.876 2.812 -9.145 99 0 
2 9.6 0.699 20.9 3.178 -11.421 99 0 
3 0.649 0.079 0.294 0.182 5.79 99 0 
4 192.45 51.91 17.525 11.081 10.109 99 0 
5 14.777 0.425 12.815 0.305 10.399 99 0 

Different 

1 48.864 1.842 58.295 2.33 -8.232 99 0 
2 9.8 0.632 19 3.162 -8.575 99 0 
3 0.636 0.092 0.339 0.126 6.346 99 0 
4 5.119 1.17 0.658 0.517 10.083 99 0 
5 14.422 0.471 12.945 0.241 7.787 99 0 

Customer's 
Priority 

Objective 
Function 

Scenario 1 Scenario 3 t df Sig. M SD M SD 

The Same 

1 49.47 2.094 53.656 2.299 -4.772 99 0.001 
2 9.6 0.699 24.1 2.685 -16.383 99 0 
3 0.649 0.079 0.14 0.06 16.021 99 0 
4 192.45 51.91 25.859 17.036 9.466 99 0 
5 14.777 0.425 12.913 0.347 15.839 99 0 

Different 

1 48.864 1.842 56.287 2.019 -12.01 99 0 
2 9.8 0.632 28.6 2.716 -25.324 99 0 
3 0.636 0.092 0.09 0.025 17.587 99 0 
4 5.119 1.17 0.387 0.244 12.119 99 0 
5 14.422 0.471 12.377 0.228 12.004 99 0 

Customer’s 
Priority 

Objective 
Function 

Scenario 2 Scenario 3 t df Sig. M SD M SD 

The Same 

1 57.876 2.812 53.656 2.299 3.51 99 0.007 
2 20.9 3.178 24.1 2.685 -2.569 99 0.03 
3 0.294 0.182 0.14 0.06 2.569 99 0.03 
4 17.525 11.081 25.859 17.036 -1.621 99 0.14 
5 12.815 0.305 12.913 0.347 -0.686 99 0.51 

Different 

1 58.295 2.33 56.287 2.019 1.75 99 0.114 
2 19 3.162 28.6 2.716 -6.499 99 0 
3 0.339 0.126 0.09 0.025 6.516 99 0 
4 0.658 0.517 0.387 0.244 1.342 99 0.213 
5 12.945 0.241 12.377 0.228 4.295 99 0.002 

Customer’s 
Priority 

Objective 
Function 

Scenario 2 Scenario 4 t df Sig. M SD M SD 

The Same 

1 57.876 2.812 57.76 2.22 0.106 99 0.918 
2 20.9 3.178 20.7 2.869 0.242 99 0.814 
3 0.294 0.182 0.259 0.099 0.895 99 0.394 
4 17.525 11.081 14.809 8.867 0.984 99 0.351 
5 12.815 0.305 12.797 0.3 0.288 99 0.78 

Different 

1 58.295 2.33 57.678 2.128 0.673 99 0.518 
2 19 3.162 19.6 1.776 -0.557 99 0.591 
3 0.339 0.126 0.284 0.087 1.245 99 0.245 
4 0.658 0.517 0.345 0.211 1.914 99 0.088 
5 12.945 0.241 12.825 0.214 1.095 99 0.302 

Customer’s 
Priority 

Objective 
Function 

Scenario 3 Scenario 5 t df Sig. M SD M SD 

The Same 

1 53.656 2.299 53.71 3.216 -0.036 99 0.972 
2 24.1 2.685 24.7 3.653 -0.37 99 0.72 
3 0.14 0.06 0.116 0.036 1.027 99 0.331 
4 25.859 17.036 31.494 19.388 -0.564 99 0.586 
5 12.913 0.347 12.793 0.525 0.532 99 0.608 

Different 

1 56.287 2.019 55.454 6.084 0.405 99 0.695 
2 28.6 2.716 29.3 4.762 -0.44 99 0.671 
3 0.09 0.025 0.082 0.027 0.828 99 0.429 
4 0.387 0.244 0.183 0.096 3.276 99 0.01 
5 12.377 0.228 12.337 0.221 0.639 99 0.539 

 

TABLE 3 PAIRED T-TEST RESULTS FOR COMPARISON OF VARIOUS 
SCENARIOS USING THE THIRD CASE STUDY 

Customer’s Priority Objective 
Function 

Scenario 1 Scenario 2 t df Sig. M SD M SD 
The Same 1 74.938 5.827 96.058 3.907 -7.58 99 0 
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2 8.6 1.075 14.8 1.398 -10.463 99 0 
3 2.287 1.117 1.45 0.624 2.475 99 0.035 
4 93.083 33.203 5.557 5.703 8.557 99 0 
5 21.313 0.845 20.023 0.627 4.19 99 0.002 

Different 

1 72.844 4.031 90.48 23.474 -2.345 99 0.044 
2 8.1 0.876 14.3 2.83 -6.016 99 0 
3 1.773 0.717 1.367 0.827 1.104 99 0.298 
4 4.699 2.047 0.098 0.108 7.179 99 0 
5 21.282 1.02 19.317 1.989 2.868 99 0.019 

Customer’s Priority Objective 
Function 

Scenario 1 Scenario 3 t df Sig. M SD M SD 

The Same 

1 74.938 5.827 86.686 8.994 -2.946 99 0.016 
2 8.6 1.075 15.9 2.514 -6.661 99 0 
3 2.287 1.117 0.97 0.531 4.61 99 0.001 
4 93.083 33.203 30.421 15.686 5.641 99 0 
5 21.313 0.845 21.68 0.728 -0.957 99 0.363 

Different 

1 72.844 4.031 95.328 7.654 -7.574 99 0 
2 8.1 0.876 17.9 1.197 -25.21 99 0 
3 1.773 0.717 0.892 0.49 4.147 99 0.002 
4 4.699 2.047 0.181 0.153 7.061 99 0 
5 21.282 1.02 21.115 0.673 0.413 99 0.689 

Customer’s Priority Objective 
Function 

Scenario 2 Scenario 3 t df Sig. M SD M SD 

The Same 

1 96.058 3.907 86.686 8.994 3.515 99 0.007 
2 14.8 1.398 15.9 2.514 -1.16 99 0.276 
3 1.45 0.624 0.97 0.531 2.407 99 0.039 
4 5.557 5.703 30.421 15.686 -5.493 99 0 
5 20.023 0.627 21.68 0.728 -5.281 99 0.001 

Different 

1 90.48 23.474 95.328 7.654 -0.61 99 0.557 
2 14.3 2.83 17.9 1.197 -3.553 99 0.006 
3 1.367 0.827 0.892 0.49 1.871 99 0.094 
4 0.098 0.108 0.181 0.153 -2.624 99 0.028 
5 19.317 1.989 21.115 0.673 -2.731 99 0.023 

Customer’s Priority Objective 
Function 

Scenario 2 Scenario 4 t df Sig. M SD M SD 

The Same 

1 96.058 3.907 95.465 7.798 0.21 99 0.838 
2 14.8 1.398 15.1 1.853 -0.519 99 0.616 
3 1.45 0.624 1.552 0.946 -0.464 99 0.654 
4 5.557 5.703 5.328 7.44 0.068 99 0.948 
5 20.023 0.627 19.965 1.16 0.182 99 0.86 

Different 

1 90.48 23.474 93.88 6.561 -0.431 99 0.677 
2 14.3 2.83 14.4 1.578 -0.093 99 0.928 
3 1.367 0.827 1.397 0.291 -0.105 99 0.918 
4 0.098 0.108 0.117 0.063 -0.441 99 0.669 
5 19.317 1.989 20.165 0.943 -1.146 99 0.282 

Customer’s Priority Objective 
Function 

Scenario 3 Scenario 5 t df Sig. M SD M SD 

The Same 

1 86.686 8.994 84.327 8.001 0.648 99 0.533 
2 15.9 2.514 15.6 1.776 0.26 99 0.801 
3 0.97 0.531 0.993 0.567 -0.099 99 0.924 
4 30.421 15.686 30.458 14.653 -0.006 99 0.995 
5 21.68 0.728 21.297 1.493 0.646 99 0.534 

Different 

1 95.328 7.654 90.003 16.18 1.059 99 0.317 
2 17.9 1.197 16.7 2.908 1.177 99 0.269 
3 0.892 0.49 0.683 0.245 1.127 99 0.289 
4 0.181 0.153 0.179 0.19 0.02 99 0.985 
5 21.115 0.673 20.723 1.799 0.639 99 0.539 

 

TABLE 4 PAIRED T-TEST RESULTS FOR COMPARISON OF VARIOUS 
SCENARIOS USING THE FOURTH CASE STUDY 

Customer’s Priority Objective 
Function 

Scenario 1 Scenario 2 t df Sig. M SD M SD 

The Same 

1 74.46 4.592 93.755 5.331 -10.819 99 0 
2 8.4 0.699 14.8 1.874 -10.352 99 0 
3 1.759 0.713 1.517 0.474 0.813 99 0.437 
4 1.857 1.295 0.024 0.021 4.478 99 0.002 
5 20.585 0.701 20.072 0.691 1.778 99 0.109 

Different 1 115.318 7.01 134.01 6.632 -5.317 99 0 
2 14.6 1.713 21.8 1.317 -9.9 99 0 
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3 1.539 0.619 0.74 0.531 2.836 99 0.02 
4 3.02 1.227 1.484 0.337 3.791 99 0.004 
5 21.248 1.312 19.855 0.765 2.777 99 0.022 

Customer’s Priority Objective 
Function 

Scenario 1 Scenario 3 t df Sig. M SD M SD 

The Same 

1 74.46 4.592 96.514 4.645 -9.927 99 0 
2 8.4 0.699 17.7 0.823 -25.364 99 0 
3 1.759 0.713 0.717 0.226 4.568 99 0.001 
4 1.857 1.295 0.031 0.025 4.469 99 0.002 
5 20.585 0.701 21.053 0.79 -1.401 99 0.195 

Different 

1 115.318 7.01 90.81 17.495 3.983 99 0.003 
2 14.6 1.713 18.5 4.197 -2.992 99 0.015 
3 1.539 0.619 0.765 0.603 3.445 99 0.007 
4 3.02 1.227 29.215 18.281 -4.448 99 0.002 
5 21.248 1.312 20.307 2.26 1.075 99 0.31 

Customer’s Priority Objective 
Function 

Scenario 2 Scenario 3 t df Sig. M SD M SD 

The Same 

1 93.755 5.331 96.514 4.645 -1.771 99 0.11 
2 14.8 1.874 17.7 0.823 -4.411 99 0.002 
3 1.517 0.474 0.717 0.226 4.648 99 0.001 
4 0.024 0.021 0.031 0.025 -0.726 99 0.486 
5 20.072 0.691 21.053 0.79 -3.048 99 0.014 

Different 

1 134.01 6.632 90.81 17.495 8.41 99 0 
2 21.8 1.317 18.5 4.197 2.684 99 0.025 
3 0.74 0.531 0.765 0.603 -0.133 99 0.897 
4 1.484 0.337 29.215 18.281 -4.839 99 0.001 
5 19.855 0.765 20.307 2.26 -0.592 99 0.568 

Customer’s Priority Objective 
Function 

Scenario 2 Scenario 4 t df Sig. M SD M SD 

The Same 

1 93.755 5.331 95.264 5.315 -0.687 99 0.51 
2 14.8 1.874 14.5 1.65 0.361 99 0.726 
3 1.517 0.474 1.422 0.582 0.327 99 0.751 
4 0.024 0.021 0.019 0.019 0.454 99 0.66 
5 20.072 0.691 19.807 0.261 1.404 99 0.194 

Different 

1 134.01 6.632 131.50 6.364 0.819 99 0.434 
2 21.8 1.317 21.2 1.317 0.97 99 0.357 
3 0.74 0.531 1.039 0.34 -1.865 99 0.095 
4 1.484 0.337 2.042 1.735 -0.969 99 0.358 
5 19.855 0.765 19.783 0.987 0.168 99 0.871 

Customer’s Priority Objective 
Function 

Scenario 3 Scenario 5 t df Sig. M SD M SD 

The Same 

1 96.514 4.645 92.903 6.464 1.319 99 0.22 
2 17.7 0.823 17 1.491 1.769 99 0.111 
3 0.717 0.226 0.904 0.383 -1.345 99 0.211 
4 0.031 0.025 0.908 0.473 -5.64 99 0 
5 21.053 0.79 21.552 0.882 -1.055 99 0.319 

Different 

1 90.81 17.495 93.136 18.42 -0.323 99 0.754 
2 18.5 4.197 18.5 3.44 0 99 1 
3 0.765 0.603 5.45 9.762 -1.533 99 0.16 
4 29.215 18.281 23.909 15.933 0.655 99 0.529 
5 20.307 2.26 20.698 2.458 -0.458 99 0.658 

 
Usually, the more information we have, the more accurate is the solution an 

algorithm can provide. However, for the real-time multi-objective VRP, the results 
obtained from the four case studies show that even when information such as 
customer's demands and travel time are missing, the results of the algorithm are as 
good to the results of the algorithm when all information is known in advance. Similar 
results were obtained for both the SPEA2 and VE-ABC algorithms (72). 

CONCLUSIONS AND SUMMARY 
The problem considered in this research is the Real-Time Multi-Objective VRP. The 
Real-Time Multi-Objective VRP is defined as a vehicle fleet that has to serve 
unknown number customers of fixed demands from a central depot. Customers must 
be assigned to vehicles, and the vehicles routed so that a number of objectives are 
minimized/maximized. The travel time between two customers or a customer and the 
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depot depends on the distance between the points and the time of day, and it also has 
stochastic properties. 

This research attempts to adjust the vehicles' routes at certain times in a planning 
period. This adjustment considers new information about the travel times, current 
location of vehicles, and new demand requests (that can be deleted after being served, 
or added since they arise after the initial service began) and more. This result in a 
dynamic change in the demand and traveling time information as time changes, which 
has to be taken into consideration in order to provide optimized real-time operation of 
vehicles.  

According to the vast literature review, five objectives were addressed: (1) 
Minimizing the total traveling time, (2) Minimizing the number of vehicles, (3) 
Maximizing customers' satisfaction, (4) Maximizing drivers' satisfaction, and (5) 
Minimizing the arrival time of the last vehicle. 

The problem was formulated as a mixed integer programming problem on a network 
and three evolutionary algorithms for solving it were described: (1) an improved 
version of the VEGA algorithm, (2) the SPEA2 algorithm, and (3) VE-ABC 
algorithm. 

Usually, the more information we have, the more accurate is the solution an 
algorithm can provide. However, for the real-time multi-objective VRP, using the 
improved VEGA algorithm, it was shown that the results obtained from the four case 
studies, even when information such as customer's demands and travel time are 
missing, are as good as to the results of the algorithm when all information is known 
in advance. Similar results were obtained for both the SPEA2 and VE-ABC 
algorithms, however they were not presented in this paper. 

Although the proposed solution algorithm works well for the real-time multi-
objective vehicle routing problem, there are several fruitful avenues for future 
research, such as: (1) using parallel algorithms, (2) modifications to the improved 
VEGA algorithm, in which the sub-populations for each objective function, are not 
equal in size, (3) using other fitness functions, and (4) comparison to other real-world 
networks. 
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