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ABSTRACT 

The vehicle routing problem with time windows, widely used in practice, is an NP-

hard problem. The proposed optimization algorithm is based on the artificial bee 

colony algorithm combined with the vector evaluated technique for solving the 

problem as a multi-objective problem.  Unlike traditional two-steps algorithms, this 

algorithm provides a simultaneous solution set. The approach was tested on standard 

Solomon benchmark problems and the result shows that this algorithm was better than 

or equal to other heuristic algorithms. 
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INTRODUCTION 

The vehicle routing problem (VRP),  one of the most important and widely studied 

combinatorial optimization problems,  has  many real-world applications in 

distribution and transportation logistics [1]. In the standard VRP, vehicles start their 

routes at a depot, call upon customers to whom they deliver goods, and then return to 

the depot. The objective of the basic VRP is to obtain a set of routes, usually the 

shortest, with the lowest-costs. 

Since Dantzig and Ramser [2] first introduced the problem, several extensions to the 

problem were developed in which other types of "costs" and different constraints are 

used. A typical and often discussed problem is the standard VRP, expanded by time 

windows (VRPTW). In VRPTW, service at every customer i must start within a given 

time window [ai,bi]. A vehicle is allowed to arrive before ai and wait until the 

customer becomes available. Arrivals after bi are prohibited. 

The objective of VRPTW is to design the shortest path for minimizing traveling 

costs, the number of vehicles and waiting time at customer locations without violating 

either the constraints of time windows and the loading capacity of the vehicle [3]. 

Since minimizing one objective rarely minimizes all the other constraints,  the 

optimization process needs to provide, not a single solution, but a range of solutions 

that represent trade-offs between the objectives.  [4-6]. Accordingly, in this paper the 

problem is considered as a multi-objective problem and an appropriate algorithm is 

provided.  

VRPTW has numerous applications in distribution management such as in 

delivering beverages, food  and newspapers and in commercial  and industrial waste 

collection [7]. 

Optimal solutions for small instances of VRPTW, in which a single objective,  

minimizing the total travel distance, is considered, can be obtained using exact 

methods [8]. The current exact algorithms were proposed by Chabrier [9], Irnich and 

Villeneuve [10], Jepsen, Petersen [11], Jepsen, Petersen [12] and Kallehauge, Larsen 

[13]. To date, 45 instances out of 56 in Solomon's benchmarks have been solved to 

optimality [11] using exact methods. 

Although exact methods can guarantee the optimality of the solution, they require 

considerable computer resources in terms of both computational time and memory. 

This is because VRPTW, which generalizes the CVRP by assuming ai=0 and bi=∞ for 

every customer i, is NP-hard i.e.,  the problem cannot be solved optimally in 

polynomial time [14]. As a result research on VRPTW has concentrated on heuristics 

and meta-heuristics. Solomon [15] was one of the first to research VRPTW. In his 

work, Solomon presented a number of extensions to existing heuristics, such as the 

savings heuristics, for solving VRPTW. For an extensive list of studies of different 

heuristics and meta-heuristics for solving VRP, as well as a comparison of the results 

obtained, the reader is referred to Bräysy and Gendreau [16], Bräysy and Gendreau 

[17], Cordeau, Desaulniers [18] and Golden, Raghavan [19]. 

Current state-of-the-art heuristics for the VRPTW consist of evolution strategies [20, 

21]; large neighborhood searches [22-24]; iterated local searches [25, 26]; and multi-

start local searches [25, 27]. It should be noted that in all of these algorithms the 

hierarchical objective is considered and therefore these heuristics are all based on a 

two-stage approach, where the number of routes is minimized in the first stage and the 

total travel distance is then minimized in the second stage, allowing us to 

independently develop algorithms for minimizing the route and  distance. 
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This article presents a new multi-objective optimization algorithm for a VRPTW 

application based on  the behavior of bees during their search for nectar. 

The rest of the paper is as follow. Section ‎0 provides a review of the basic artificial 

bee colony (ABC) algorithm and the concepts of the vector evaluated technique. A 

combined vector evaluated ABC is described. Other issues, such as solution 

representation and neighborhood operators, are discussed as well. Experimental 

results showing the improvement in performance of the enhanced ABC are presented 

in Section ‎0. Finally, Section ‎0 concludes the paper. 

VECTOR EVALUATED ARTIFICIAL BEE COLONY (VE-ABC) 

Artificial Bee Colony 

The artificial bee colony (ABC) algorithm proposed by Karaboga [28] and later 

modified by Karaboga and Akay [29] is a new evolutionary meta-heuristic technique 

inspired by the intelligent behavior of natural honey bees in their search for nectar.  

In the ABC algorithm, the colony of artificial bees consists of three groups of bees: 

(1) employed bees - bees that are currently exploiting a food source; (2) onlookers - 

bees that are waiting in the hive for the employed bees to share information about the 

food sources; and (3) scouts - bees that are searching for new food sources in the 

neighborhood of the hive. 

The ABC algorithm is an iterative algorithm. It starts by assigning each employed 

bee to a randomly generated solution (known as a food source). Next, in each 

iteration, each employed bee, using a neighborhood operator, finds a new food source 

near its assigned food source. The nectar amount (defined as a fitness function) of the 

new food source is then evaluated. If the amount of nectar in the new food source is 

higher than the amount of nectar in the old one, then the older source is replaced by 

the newer one. Next, the nectar information of the food sources is shared with the 

onlookers (real bees do this by dancing in the dance area inside the hive). Usually, the 

number of onlookers is taken to be equal to the number of employed bees. The 

onlooker chooses a food source according to the probability proportional to the 

quality of that food source. Roulette wheel selection is the usual method. Therefore, 

good food sources, as opposed to bad ones, attract more onlooker bees. Subsequently, 

using a neighborhood operator, each onlooker finds a food source near its selected 

food source and calculates its nectar amount. Then, for each old food source, the best 

food source among all the food sources near the old one is determined. The employed 

bee associated with the old food source is assigned to the best food source and 

abandons the old one if the best food source is better than the old food source. A food 

source is also abandoned by an employed bee if the quality of the food source has not 

improved in the course of a predetermined and limited number of successive 

iterations. The employed bees then become scouts and randomly search for new food 

source. After a scout finds a new food source, it becomes an employed bee again. 

After each employed bee is assigned to a food source, another iteration of the ABC 

algorithm begins. The iterative process is repeated until a stopping condition is met. 

 

Szeto, Wu [30] describe the steps of the ABC algorithm as follows: 

 

1. Randomly generate a set S of i solutions as initial food sources, where i is the 

number of employed bees. Assign an employed bee to each food source. 

2. Evaluate the nectar amount (fitness),  if s , of each food source, for each 

objective function j. 
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3. Repeat until a stopping condition is met: 

a. For each food source is S , apply the neighborhood operator to 

generate a neighbor food source, is . If the fitness of the neighbor 

food source is better than that of the original food source, i.e., 

   i if s f s  for maximization problems, then replace the original 

food source with this neighbor food source 

b. Set 0 1, ,... ,iG G G   where i is the number of employed bees. 

c. For each onlooker, use the fitness-based roulette wheel selection 

method to select a food source, is . Apply a neighborhood operator to 

is  to find a neighbor food source, say is . Add is  to iG , i.e. 

{ }i i iG G s  . 

d. For each food source is S , if iG   then let s  be the source food 

with best fitness value in iG . If the fitness of s  is better than that of 

is , then replace is  with s . 

e. Replace any food sources is S  whose fitness has not been 

improved for limit iterations with randomly generated solutions 

4. Output the best food source (solution) found (meaning the set E). 

 

Since ABC algorithms were first introduced, a very limited number of ABC 

algorithms for solving VRPTW were developed [31, 32]. 

 

Vector Evaluated Technique 

Genetic algorithms (GA) [33], which constitute a class of evolutionary algorithms 

(EA), offer a randomized global search technique for finding exact or approximate 

solutions to optimization and search problems. Basically, a GA evolves a population 

of bit-strings, or chromosomes, where each chromosome encodes a solution to a 

particular instance. This evolution takes place through the application of operators 

that mimic natural phenomena observed in nature, such as inheritance, mutation, 

selection, and crossover. For more information about GAs, please refer to [34]. 

GAs are widely used for solving VRPTWs. Homberger and Gehring [35] described 

two GAs for VRPTW. In the first algorithm, new individuals are generated directly 

through mutations and no recombination takes place. In the second algorithm, 

offspring are generated through a two-step recombination procedure in which three 

individuals are involved. In both algorithms, the fitness of an individual depends first 

on the number of vehicles used and second on the total distance traveled.  

In a later work, Gehring and Homberger [36] proposed a two-phase meta-heuristic in 

which the first phase uses a GA to minimize the number of vehicles, while the second 

one minimizes the total distance through a tabu search. 

Berger and Barkaoui [37] developed a GA that concurrently evolves two distinct 

populations pursuing different objectives under partial constraint relaxation. The first 

population aims to minimize the total distance traveled while the second one focuses 

on minimizing the violations of the time window constraints. This approach has 

proved to be rather efficient in minimizing the number of vehicles used. 

Since ABC algorithms share common characteristics with GAs, simple 

modifications made to the basic GAs, can be adopted and applied to ABC algorithms 

in order to solve multi-objective VRPTWs.  
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The vector evaluated genetic algorithm (VEGA) proposed by [38], was the first GA 

dealing with multiple objectives. Aware of the potential that GAs have in multi-

objective optimization, Schaffer proposed an extension of the simple GA to 

accommodate vector-valued fitness measures. With the VEGA, the selection step is 

modified so that at each generation, a number of sub-populations are generated by 

performing proportional selection according to each objective function in turn. Thus, 

for a problem with q objectives, q sub-populations of size N/q each would be 

generated, assuming a population size of N. These would then be shuffled together to 

obtain a new population of size N, in order for the algorithm to proceed by applying 

crossover and mutation in the usual way. This multi-objective optimization strategy 

has already been successfully applied in many cases for experimental medium 

optimization [39]. 

Based on the structure of the ABC algorithm, the vector evaluated technique and the 

use of elitism, which is the process of preserving previous high performance solutions 

from one generation to the next, the new combined VE-ABC algorithm that we 

propose is defined as follows: 

 

1. Set E   

2. Randomly generate a set S of i solutions as initial food sources, where i is the 

number of employed bees. Assign an employed bee to each food source. 

3. Evaluate the nectar amount (fitness),  j if s , of each food source, for each 

objective function j. 

4. For each s S , if s is a non-dominated solution add s to E. 

5. Repeat until a stopping condition is met 

a. For each food source is S , apply the neighborhood operator to 

generate a neighbor food source, is . If the fitness of the neighbor 

food source is better than that of the original food source, based on 

objective function j, i.e.    j i j if s f s  for maximization problems, 

when 

 mod NUM_OF_OBJECTIVES
NUM_EMPLOYED_BEES

NUM_OF_OBJECTIVES

i
j

 
 
 
  
  
  

, then replace the original food source with this neighbor food source 

b. Set 0 1, ,... ,iG G G   where i is the number of employed bees. 

c. For each onlooker, use the fitness-based roulette wheel selection 

method to select a food source, is , using objective function j, where 

 mod NUM_OF_OBJECTIVES
NUM_EMPLOYED_BEES

NUM_OF_OBJECTIVES

i
j

 
 
 
  
  
  

. Apply a neighborhood operator to is  to find a neighbor food source, 

say is . Add is  to iG , i.e. { }i i iG G s  . 

d. For each food source is S , if iG   then let s  be the source food 

with best fitness value in iG , when the fitness is evaluated regarding 
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objective j, when 
NUM_EMPLOYED_BEES

NUM_OF_OBJECTIVES

i
j

 
 
 
  
  
  

. If the fitness 

of s  is better than that of is , then replace is  with s . 

e. For each s S , if s is not dominated by any solution e E , add s to 

E and check each solution e E .  If e is dominated by s, remove e 

from E. 

f. Replace any food sources is S  whose fitness has not been 

improved for limit iterations with randomly generated solutions 

6. Output the best food source (solution) found (meaning the set E). 

 

Elitism guarantees that the best solutions found in each iteration are passed on to the 

next iteration and not lost. The original ABC algorithm does not use elitism. 

Conventionally, elitism is achieved by simply copying the solutions directly into the 

new generation; in the VE-ABC algorithm it is used is a slightly different way.  

 

In order to describe how the preservation of high performance solutions is done in 

the combined VE-ABC algorithm, the concepts of dominated and non-dominated 

solution have to be defined first. In single objective optimization problems, the “best” 

solution is defined in terms of an “optimum solution” for which the objective function 

value is optimized when compared to any other alternative in the set of all feasible 

alternatives. In multi-objective optimization problems, however, the notion of an 

“optimum solution” does not usually exist since the optimum of each criterion does 

not usually point to the same alternative. The optimal solution in a multi-objective 

optimization problem is usually equivalent to choosing the best compromise solution. 

In the absence of an optimal solution, the concepts of dominated and non-dominated 

solutions become relevant. 

A feasible solution, x1, dominates another feasible solution, x2, if x1 is at least as 

good as x2 with respect to all objective functions and is better than x2 with respect to 

at least one objective function. A non-dominated solution is a feasible solution that is 

not dominated by any other feasible solution. Hence  the solution of a multi-objective 

problem is a set of non-dominated feasible solutions. 

Using the definition above, the set of high performance solutions can be defined as 

the set of non-dominated solutions obtained in all iterations of the algorithm. This set 

of non-dominated solutions, denoted as E, can be obtained if, in each iteration, any 

newly obtained solution is added to the set E if it is not dominated by any solution 

already in E. Moreover, if a newly obtained solution should be added to the set E, 

then any solution already in E that is dominated by the newly obtained solution is 

removed from E. After the last iteration, the result of the algorithm is the set E, which 

is the set of non-dominated solutions obtained in all of the algorithm’s iterations.  

 

VRPTW Implementation 

A candidate solution to an instance of the VRPTW must specify the number of 

vehicles required, the distribution of the demands imposed upon  these vehicles and 

the delivery order for each route. In order to maintain the simplicity of the VE-ABC 

algorithm, a simple and straightforward solution representation scheme is adopted. 
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Suppose n customers are visited by m vehicle routes. The representation has the form 

of a vector of length (n m-1). In the vector, there are n integers between 1 and n 

inclusively representing the identities of customers.  There are also m-1 0s in the 

vector acting as separators between vehicle routes from the depot. The sequence 

between two 0s is the sequence of customers to be visited by a vehicle. 

 

4 7 0 1 3 2 0 6 5 

Figure 1 – An example of a chromosome with 7 customers and 3 routes 

 

This kind of representation was used by Pereira, Tavares [40] for their GA and by 

Szeto, Wu [30] for their ABC algorithm. 

Any solution used by the VE-ABC algorithm must be feasible. In order to simplify 

the process of creating a feasible solution, a solution in which every customer is 

assigned to a different vehicle was chosen. This approach is similar to the initial 

solution of Clarke and Wright [41] savings algorithm. In order to increase the 

randomness of the solutions, and increase the effectiveness of the neighborhood 

operators, the order of the customers in the initial solutions is randomly selected.  

A neighborhood operator is used to obtain a new solution x’ from the current 

solution x in step 5 of the VE-ABC heuristic. For every solution, a number of 

randomly chosen neighborhood operators are applied. The order of the neighborhood 

operation, is also randomly chosen. The possible operators include: 

1. Random swaps – After two  positions in the solution vector are randomly 

selected, the customers located at these two points are swapped. 

2. Random swaps of subsequences – This is an extension of the previous 

operation. Two subsequences of random lengths of customers and depot are 

selected and swapped.  

3. Random insertions - This operator consists of randomly selecting two 

positions, i and j, and relocating the customer from position i to position j 

4. Random insertions of subsequences – This is an extension of the previous 

operation. A subsequence of random length of customers and depot starting 

from position i is relocated to position j. 

5. Reversing a subsequence – A subsequence of random length that includes 

consecutive customers and a depot is selected and then the order of the 

corresponding customers and depot is reversed.  

6. Random swaps of reversed subsequences – This operation is a combination 

of a) random swap of subsequences and b) reversing a subsequence operators. 

Two subsequences of random lengths of customers and depot are chosen and 

swapped. Then each of the swapped subsequences is reversed. 

7. Random insertions of reversed subsequences - A subsequence of random 

length of customers and depot starting from position i is relocated to position j 

. Then the relocated subsequence is reversed.  

8. Merge routes – Two following routes in a solution are merged into a single 

route. 

9. Split routes – A single route in a solution is split into two different routes. 

 

Neighborhood operation may cause a feasible solution to become not feasible. 

Accordingly, before applying a neighborhood operation, the original solution is saved 

and then the new solution is checked against the problem's constraints. If the new 

solution does not violate the problem's constraints, the new solution is kept.  

Otherwise, the solution is returned to its original state. 
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EXPERIMENTAL RESULTS 

In order to evaluate the results of the VE-ABC algorithm, the algorithm was tested 

using the well-known Solomon’s instances. Solomon’s instances are three sets of test 

problems, each with a different number of customers (25, 50 and 100). Each set is 

composed of 56 test problems that are grouped into six problem sets according to 

geographical data; percent of time-constrained customers; and tightness and 

positioning of the time windows. The geographical data is randomly generated in 

problem sets R1 and R2 and clustered in problem sets C1 and C2.  In problem sets 

RC1 and RC2 there is a mix of random and clustered structures. Problem sets R1, C1 

and RC1 have a short scheduling horizon and only a few customers per route can be 

serviced. R2, C2 and RC2 have a long scheduling horizon permitting many customers 

to be serviced by the same vehicle. Detailed data about the test problems, as well as 

best known solutions, can be found in 

http://web.cba.neu.edu/~msolomon/problems.htm. 

All three problem sets were tested using VE-ABC algorithm. All experiments were 

performed on a 2.8 Giga-Hertz AMD Athlon 64 X2 5600 computer running Windows 

XP with 2GB RAM. The heuristics were coded in C# and Dot Net 4.0 (Visual studio 

2010). 

A setup phase was conducted, in which it was found that the algorithm performs best 

when limit is set to 25 for problems with 25 customer, 50 for problems with 50 

customers and 300 for problems with 100 customers. Using curve fitting, the size of 

limit can be defined as 0.053n
2
-3n+66.667. It was also found that the number of 

iterations, number of employed bees as well as the number of onlookers bees are 

dependent on the size of the problem. For problems with 25 customers, by average, 

125 iterations were needed in order to converge to the optimal solution. For problems 

with 50 customers, 500 iterations were needed and for problems with 100 customers, 

5000 iterations were needed in order to converge to the optimal solution. Using curve 

fitting, the numbers of iterations can be defined as n
2
-60n-1000, where n is the 

number of customers. It was also found that the number of employed bees should be 5 

times the number of customers, and that the number of onlookers bees should be 10 

times the numbers of employed bees. 

Szeto, Wu [30] showed that each neighborhood operator had a different effect on the 

algorithm's result. In order to overcome this effect whenever a neighborhood operator 

has to be selected and applied, roulette wheel selection has been used. Each 

neighborhood operation has been assigned with a counter. Each time a neighborhood 

operator is applied on a given solution, its result is compared with the original 

solutions, and if the new solution is better than the original solution, the counter 

associated with the specific neighborhood operator is increased. Next time a 

neighborhood operator has to be used, roulette wheel selection, based on the 

neighborhood operator's counter is used for selecting a neighborhood operator. 

Whenever a counter reaches a pre-determined value (20 in the described test) all 

counters are set back to 1. This is done to avoid the possibility of choosing the same 

neighborhood operator every time due to a high value of a specific counter. 

 

As stated above, the objective of VRPTW is to compute the shortest path in order to 

obtain minimum traveling costs and the least number of vehicles [3]. The results show 

that for all problems, the VE-ABC algorithm was unable to reach a solution with a 

distance lower than the distance of the best known solution. Nevertheless, the results 

are very close to the result of the best known solutions. As can be seen from the 

results, for all problems with 25 customers, the algorithm was able to find a solution 
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in which the distance of the tour is not higher than 2.08% (0.3% in average) from the 

best-known solution, with average running time of 10.3 seconds. For problems with 

50 customers, the best-known solutions are provided for 26 out of the 55 problems 

(47%). In this case, the algorithm was able to find a solution in which the distance of 

the tour is no higher than 2.5% (0.9% on average), when the average deviation of all 

solutions from the best-known solution is 3.4%, with average running time of 179.6 

seconds. As for problems with 100 customers, the best-known solutions are provided 

for 38 out of the 55 problems. Using 5000 generations and setting the limit to 300, the 

algorithm was able to find a solution in which the distance of the route is no higher 

than 2.4% (1.3% on average) from the best-known solution, when the average 

deviation of all solutions from the best-known solution is 4.7%, with average running 

time to 4304 seconds. 

 

As for the second objective, minimizing the number of vehicles, for some of the test 

problems the algorithm was able to find a solution in which the number of vehicles is 

smaller than the number of vehicles of the best known solutions. For problems with 

25 customers, there was an improvement of one vehicle in 15 out of 56 problems; , in 

two additional problems there was an improvement of two vehicles. For problems 

with 50 customers, there was an improvement of one vehicle in 11 out of 55 

problems; an improvement of two vehicles was found in two more problems; and in 

one additional problem there was an improvement of three vehicles. No improvement 

was found for problems with 100 customers. 

The results described above are summarized in Table 1. 

 

Table 1 - Summery of VE-ABC results 

 

Number Of 

Customers 

             Tour 

length 

objective 

function 

 

Vehicles 

objective 

function 

1 0.025L

L

Opt

Best
    1 0.025L

L

Opt

Best
   1 0.025L

L

Opt

Best
   

25 

Optv>Bestv 0 4 0 

Optv=Bestv 2 54 0 

Optv<Bestv 15 4 0 

50 

Optv>Bestv 15 4 0 

Optv=Bestv 25 19 0 

Optv<Bestv 13 4 0 

150 

Optv>Bestv 33 2 0 

Optv=Bestv 8 7 0 

Optv<Bestv 0 0 0 

 

 

An analysis of the best known solution shows that the best known solutions for the 

set of problems with 25 customer was found using at least four different algorithms. 

For problems with 25 customers, since the VE-ABC algorithm was able to arrive at 

the best known solution for all 56 different problems, it provides a good alternative to 
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the four other algorithms. For the set of problems with 50 customers, the best known 

solutions were found using at least six different algorithms. For the set of problems 

with 100 customers, the best known solutions were found using at least four different 

algorithms. For problems with 50 and 100 customers, the VE-ABC algorithm was 

able to find a solution close to the best known solution for all problems. There is no 

other algorithm known to the authors that is capable of achieving this result.  

As can be seen from the results, the main problem of the algorithm is that the 

running time of the algorithm increases dramatically as the problem size increases. 

This can be solved by combining the VE-ABC algorithms with other heuristics as can 

be seen from the next examples.  

For problem C101 with 100 customers, when divided to 4 groups each of 25 

customers using a Sweep like heuristics, a result with 14 vehicles and total length of 

1034.6 was obtained. For problem C102 with 100 customers, a result with 13 vehicles 

and total length of  964.2 was obtained and for problem C103 with 100 customers, the 

result obtained was a result with 12 vehicles and total length 957.9. The average 

running time for all problems was 63.7 seconds. 

 

CONCLUSIONS 

In this paper, an ABC algorithm which implements the vector evaluation approach 

was developed to solve a multi-objective vehicle routing problem with time windows. 

Most heuristic and meta-heuristic algorithms for solving VRPTW, solve the problem 

in two stages. In the first stage, the primary objective, minimizing the number of 

vehicles, is optimized.  In the second stage, the total route length is optimized based 

on the results of the previous stage. 

In this paper the VRPTW problem was constructed as a multi-objective problem, 

therefore the two objectives were simultaneously optimized. Using Solomon's 

instances, it was shown that in cases with 25 or 50 customers, the algorithm was able 

to find solutions better than the best known solutions regarding the number of 

vehicles used. For problems with 100 customers, no improvement was found 

compared to the best known solutions. It was also shown that for problems with 100 

customers, an increase in the number of iterations and a higher value of limit can 

bring the solution closer to the best known solutions. 

The proposed algorithm also has the advantage of being able to solve a wide range 

of problems in contrast to the common development of a problem specific algorithm.  

Further research directions might include evaluating the number of iterations and of 

customers and  new neighborhood operators, etc., as well as combining the VE-ABC 

algorithms with other heuristics. 
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APPENDIX A 

 

Table 2 - Results of VE-ABC algorithm for Solomon's instances with 25 customers 

 

Instance 

ABC 
Best Known Solution 

Improvement Besta Avg.b 

Vehicles Distance Vehicles Distance CPUc Vehicles Distance 

C101 3 191.8 3 192.1 24.9 3 191.3 0.00%,-0.26% 

C102 3 190.7 3 191.1 17.9 3 190.3 0.00%,-0.21% 

C103 3 190.7 3 191.9 12.1 3 190.3 0.00%,-0.21% 

C104 3 187.5 3 189 9.3 3 186.9 0.00%,-0.32% 

C105 3 191.8 3 191.8 23.6 3 191.3 0.00%,-0.26% 

C106 3 191.8 3 191.8 25.3 3 191.3 0.00%,-0.26% 

C107 3 191.8 3 191.9 21.4 3 191.3 0.00%,-0.26% 

C108 3 191.8 3 191.8 17.1 3 191.3 0.00%,-0.26% 

C109 3 191.8 3 192.2 13.1 3 191.3 0.00%,-0.26% 

C201 2 215.5 2 216.7 24.5 2 214.7 0.00%,-0.37% 

C202 2 215.5 1.9 217.6 12.5 2 214.7 0.00%,-0.37% 

C202 1 223.3 1.9 217.6 12.5 2 214.7 100.00%,-3.85% 

C203 2 215.5 1.9 222.1 8.3 2 214.7 0.00%,-0.37% 

C203 1 231.8 1.9 222.1 8.3 1 214.7 0.00%,-7.38% 

C204 1 213.9 1.7 220 6.4 1 213.1 0.00%,-0.37% 

C205 2 215.5 2 215.5 17.2 2 214.7 0.00%,-0.37% 

C206 2 215.5 2 215.5 14.9 2 214.7 0.00%,-0.37% 

C207 2 215.3 2 215.5 11.3 2 214.5 0.00%,-0.37% 

C208 2 215.4 1.8 218.7 12.7 2 214.5 0.00%,-0.42% 

C208 1 229.8 1.8 218.7 12.7 2 214.5 100.00%,-6.66% 

R101 8 618.3 8 618.6 28.3 8 617.1 0.00%,-0.19% 

R102 7 548.1 7 548.2 22.6 7 547.1 0.00%,-0.18% 

R103 5 455.7 5.4 468.1 17.8 5 454.6 0.00%,-0.24% 

R103 4 479.2 5.4 468.1 17.8 5 454.6 25.00%,-5.13% 

R104 4 418 4.1 427.8 14.8 4 416.9 0.00%,-0.26% 

R105 6 531.5 6 533.3 26.4 5 530.5 -16.67%,-0.19% 

R105 5 563.2 6 533.3 26.4 5 530.5 0.00%,-5.81% 

R106 5 466.5 5 467.6 20.8 5 465.4 0.00%,-0.24% 

R107 4 425.3 4.4 438.2 16.5 4 424.3 0.00%,-0.24% 

R108 4 398.3 4 400 14 4 397.3 0.00%,-0.25% 

R109 5 442.6 4.9 446.1 24.1 5 441.3 0.00%,-0.29% 

R109 4 464.7 4.9 446.1 24.1 5 441.3 25.00%,-5.04% 

R110 4 445.8 4.8 449.1 18.7 4 444.1 0.00%,-0.38% 

R110 5 445.2 4.8 449.1 18.7 4 444.1 -20.00%,-0.25% 

R111 4 429.7 4.4 439.3 18.3 4 428.8 0.00%,-0.21% 

R112 4 394.1 4 398.4 14.6 4 393 0.00%,-0.28% 

R201 4 464.4 3.6 482.7 15.4 4 463.3 0.00%,-0.24% 

R201 3 481.5 3.6 482.7 15.4 4 463.3 33.33%,-3.78% 

R202 3 418.6 3.5 420 12.8 4 410.5 33.33%,-1.94% 

R202 4 411.5 3.5 420 12.8 4 410.5 0.00%,-0.24% 

R203 2 408.6 2.7 414.9 8.2 3 391.4 50.00%,-4.21% 

R203 3 392.3 2.7 414.9 8.2 3 391.4 0.00%,-0.23% 

R204 2 356.4 2 364.1 6.2 2 355 0.00%,-0.39% 

R205 3 394.1 2.6 408 12.1 3 393 0.00%,-0.28% 

R205 2 406 2.6 408 12.1 3 393 50.00%,-3.20% 

R206 4 376 2.6 386.1 8.9 3 374.4 -25.00%,-0.43% 

R206 2 380 2.6 386.1 8.9 3 374.4 50.00%,-1.47% 

R206 3 376.9 2.6 386.1 8.9 3 374.4 0.00%,-0.66% 

R207 3 362.6 2.4 377.5 7.1 3 361.6 0.00%,-0.28% 

R207 1 437.9 2.4 377.5 7.1 3 361.6 200.00%,-17.42% 

R207 2 362.8 2.4 377.5 7.1 3 361.6 50.00%,-0.33% 

R208 1 329.3 1.3 349.9 5.3 1 328.2 0.00%,-0.33% 

R209 2 371.6 2.2 382.6 10 2 370.7 0.00%,-0.24% 

R210 2 413.2 2.5 423.3 9.1 3 404.6 50.00%,-2.08% 
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Instance 

ABC 
Best Known Solution 

Improvement Besta Avg.b 

Vehicles Distance Vehicles Distance CPUc Vehicles Distance 

R210 3 405.5 2.5 423.3 9.1 3 404.6 0.00%,-0.22% 

R211 1 405 2.1 366.1 6.9 2 350.9 100.00%,-13.36% 

R211 2 353 2.1 366.1 6.9 2 350.9 0.00%,-0.59% 

RC101 4 463.6 4.9 478.7 25.6 4 461.1 0.00%,-0.54% 

RC102 3 352.7 3.7 389 20.4 3 351.8 0.00%,-0.26% 

RC103 3 333.9 3 334.3 17.6 3 332.8 0.00%,-0.33% 

RC104 3 307.1 3 307.9 14.3 3 306.6 0.00%,-0.16% 

RC105 4 413.5 4.2 432.4 21.7 4 411.3 0.00%,-0.53% 

RC106 3 346.5 3.2 359.1 20 3 345.5 0.00%,-0.29% 

RC107 3 299 3 299 16.7 3 298.3 0.00%,-0.23% 

RC108 3 295 3 295 12.6 3 294.5 0.00%,-0.17% 

RC201 3 361.2 3 365.7 16.4 2 360.2 -33.33%,-0.28% 

RC202 3 338.8 2.8 350.1 10.7 3 338 0.00%,-0.24% 

RC202 2 377.9 2.8 350.1 10.7 3 338 50.00%,-10.56% 

RC203 3 327.7 2.5 345.7 7.7 3 326.9 0.00%,-0.24% 

RC203 2 356.2 2.5 345.7 7.7 3 326.9 50.00%,-8.23% 

RC204 3 300.2 2.4 312.4 6.4 3 299.7 0.00%,-0.17% 

RC204 2 313.3 2.4 312.4 6.4 3 299.7 50.00%,-4.34% 

RC204 1 327.3 2.4 312.4 6.4 3 299.7 200.00%,-8.43% 

RC205 3 338.9 3 339.4 12.4 3 338 0.00%,-0.27% 

RC206 3 325.1 2.6 346.3 11.8 3 324 0.00%,-0.34% 

RC206 2 344.9 2.6 346.3 11.8 3 324 50.00%,-6.06% 

RC207 3 299 2.5 313 9.8 3 298.3 0.00%,-0.23% 

RC207 2 308.6 2.5 313 9.8 3 298.3 50.00%,-3.34% 

RC208 2 269.6 2 270.8 6.2 2 269.1 0.00%,-0.19% 

 
a
 Value of non-dominated solution obtained in 20 runs 

b
 Average of objective values of non dominated solution obtained in 20 runs 

c
 Average CPU time in seconds for each run 

 

 

APPENDIX B 

 

Table 3 - Results of VE-ABC algorithm for Solomon's instances with 50 customers 

 

Instance 

ABC 
Best Known Solution 

Improvement Best Avg. 

Vehicles Distance Vehicles Distance CPU Vehicles Distance 

C101 5 363.3 6.1 410.4 44.6 5 362.4 0.00%,-0.25% 

C102 6 382.2 6.4 426.6 34.8 5 361.4 -16.67%,-5.44% 

C102 5 403.2 6.4 426.6 34.8 5 361.4 0.00%,-10.37% 

C103 5 392.2 6.1 439.9 24.7 5 361.4 0.00%,-7.85% 

C104 5 389 5.5 434.3 15.1 5 358 0.00%,-7.97% 

C105 5 363.3 6.1 419.5 40.5 5 362.4 0.00%,-0.25% 

C106 6 383.3 6.1 405.4 42.7 5 362.4 -16.67%,-5.45% 

C107 5 363.3 6.1 417 35.4 5 362.4 0.00%,-0.25% 

C108 5 365.8 6.2 411.2 31.3 5 362.4 0.00%,-0.93% 

C109 5 404.4 6 428.6 25.1 5 362.4 0.00%,-10.39% 

C109 6 391.6 6 428.6 25.1 5 362.4 -16.67%,-7.46% 

C201 3 373.8 3.8 411.5 40.2 3 360.2 0.00%,-3.64% 

C202 3 364.7 3.8 421.8 24.7 3 360.2 0.00%,-1.23% 

C203 3 390.7 3.5 427.4 16.8 3 359.8 0.00%,-7.91% 

C204 3 394 3.1 416.2 9.5 2 350.1 -33.33%,-11.14% 

C205 3 361.4 3.4 398.9 31.7 3 359.8 0.00%,-0.44% 

C206 3 361.4 3.5 397.7 26.6 3 359.8 0.00%,-0.44% 

C207 3 361.2 3.2 392.7 20.8 3 359.6 0.00%,-0.44% 
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Instance 

ABC 
Best Known Solution 

Improvement Best Avg. 

Vehicles Distance Vehicles Distance CPU Vehicles Distance 

C208 2 352.1 2.9 385.8 23 2 350.5 0.00%,-0.45% 

R101 12 1061.2 13.1 1081.8 51.2 13 1047 8.33%,-1.34% 

R101 13 1049.5 13.1 1081.8 51.2 13 1047 0.00%,-0.24% 

R102 11 922.8 11.5 948.1 42.9 12 944.9 9.09%,2.39% 

R103 9 798.2 9.4 822.9 36.9 9 772.9 0.00%,-3.17% 

R104 7 664.8 7 680 27.4 6 631.2 -14.29%,-5.05% 

R104 6 675.2 7 680 27.4 6 631.2 0.00%,-6.52% 

R105 10 944.3 10.9 963.2 47.4 10 906.6 0.00%,-3.99% 

R105 11 928.7 10.9 963.2 47.4 10 906.6 -9.09%,-2.38% 

R106 9 812.8 9.4 850.9 41.6 8 793.6 -11.11%,-2.36% 

R106 8 912 9.4 850.9 41.6 8 793.6 0.00%,-12.98% 

R107 8 745.9 8.3 777 37.9 7 720.4 -12.50%,-3.42% 

R108 6 637.7 6.6 663.5 26.2 6 618.2 0.00%,-3.06% 

R109 8 807.2 9.2 841.3 41.6 8 803.2 0.00%,-0.50% 

R110 8 733.9 8.3 773.9 37.5 8 724.9 0.00%,-1.23% 

R110 7 737.3 8.3 773.9 37.5 8 724.9 14.29%,-1.68% 

R111 8 743.1 8.3 768.2 35.6 8 724.9 0.00%,-2.45% 

R111 7 759.3 8.3 768.2 35.6 8 724.9 14.29%,-4.53% 

R112 7 670.5 7.1 691.4 30 6 651.1 -14.29%,-2.89% 

R201 6 848.3 7.4 872.7 28.4 6 800.7 0.00%,-5.61% 

R201 5 872.8 7.4 872.7 28.4 6 800.7 20.00%,-8.26% 

R201 7 829.8 7.4 872.7 28.4 6 800.7 -14.29%,-3.51% 

R202 5 744 5.9 780.6 21.4 5 712.2 0.00%,-4.27% 

R202 4 749.6 5.9 780.6 21.4 5 712.2 25.00%,-4.99% 

R203 4 636.2 5 690.7 16 5 606.4 25.00%,-4.68% 

R204 2 551.5 3 578.9 9.4 2 509.5 0.00%,-7.62% 

R204 3 539.1 3 578.9 9.4 2 509.5 -33.33%,-5.49% 

R205 4 796.6 5.5 771.4 21.9 5 703.3 25.00%,-11.71% 

R205 5 728.7 5.5 771.4 21.9 5 703.3 0.00%,-3.49% 

R206 3 690.3 4.6 714.3 16.9 6 647 100.00%,-6.27% 

R206 5 660.3 4.6 714.3 16.9 6 647 20.00%,-2.01% 

R207 4 623.1 4.1 660.4 13.4 4 584.6 0.00%,-6.18% 

R207 3 653.9 4.1 660.4 13.4 4 584.6 33.33%,-10.60% 

R208 2 523.7 2.4 555.9 8.5 2 487.7 0.00%,-6.87% 

R209 5 644.9 4.7 691.2 18.1 4 600.6 -20.00%,-6.87% 

R209 4 661.2 4.7 691.2 18.1 4 600.6 0.00%,-9.17% 

R210 3 728.2 4.8 729.9 17.8 5 663.4 66.67%,-8.90% 

R210 4 701.3 4.8 729.9 17.8 5 663.4 25.00%,-5.40% 

R210 5 689.7 4.8 729.9 17.8 5 663.4 0.00%,-3.81% 

R211 3 605.5 4.1 621.8 14.8 3 551.3 0.00%,-8.95% 

R211 4 587.7 4.1 621.8 14.8 3 551.3 -25.00%,-6.19% 

RC101 10 977.1 10 986.6 48.7 9 957.9 -10.00%,-1.96% 

RC101 9 982.6 10 986.6 48.7 9 957.9 0.00%,-2.51% 

RC102 8 932.6 9 903.1 43.7 8 844.3 0.00%,-9.47% 

RC102 9 889.4 9 903.1 43.7 8 844.3 -11.11%,-5.07% 

RC103 7 759.8 7.8 821.7 37.7 6 712.6 -14.29%,-6.21% 

RC104 5 549 5.6 587.9 29.1 5 546.5 0.00%,-0.46% 

RC105 9 911.5 9.4 941.5 44.1 9 888.9 0.00%,-2.48% 

RC106 7 816.3 8.4 868.5 42.1 7 791.9 0.00%,-2.99% 

RC107 7 711 7.3 765 36.4 6 664.5 -14.29%,-6.54% 

RC108 6 599.2 6.1 647.6 30.5 6 598.1 0.00%,-0.18% 

RC201 5 691.4 6.2 796 32.3 5 684.8 0.00%,-0.95% 

RC202 5 622 5.4 709.8 24 5 613.6 0.00%,-1.35% 

RC203 5 605.2 4.7 681.4 17.2 4 555.3 -20.00%,-8.25% 

RC203 3 629.6 4.7 681.4 17.2 4 555.3 33.33%,-11.80% 

RC204 2 524 3 508.1 10.8 3 444.2 50.00%,-15.23% 

RC204 3 459.4 3 508.1 10.8 4 444.2 33.33%,-3.31% 

RC205 5 667.5 5.7 761.4 25.5 5 631 0.00%,-5.47% 

RC206 4 644.5 5 694.8 23.8 5 610 25.00%,-5.35% 

RC206 5 617.7 5 694.8 23.8 5 610 0.00%,-1.25% 

RC207 5 565.2 4.6 640.1 19.6 4 558.6 -20.00%,-1.17% 

RC207 4 607.1 4.6 640.1 19.6 4 558.6 0.00%,-7.99% 
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Instance 

ABC 
Best Known Solution 

Improvement Best Avg. 

Vehicles Distance Vehicles Distance CPU Vehicles Distance 

RC208 3 537.5 4.1 532.8 14.2    

RC208 4 491.5 4.1 532.8 14.2    

 

APPENDIX C 

 

Table 4 - Results of VE-ABC algorithm for Solomon's instances with 100 customers 

 

Instance 

ABC 
Best Known Solution 

Improvement Best Avg. 

Vehicles Distance Vehicles Distance CPU Vehicles Distance 

C101 10 828.9 10.2 846.2 4282.8 10 827.3 0.00%,-0.19% 

C102 10 829.9 10.6 863.4 4226.4 10 827.3 0.00%,-0.31% 

C103 10 841.2 10.8 886.2 4525.6 10 826.3 0.00%,-1.77% 

C104 10 869.6 10.8 921.4 4483 10 822.9 0.00%,-5.37% 

C105 10 828.9 10.6 845.9 4286 10 827.3 0.00%,-0.19% 

C106 10 828.9 10.2 849.4 3736.6 10 827.3 0.00%,-0.19% 

C107 11 859.1 10.7 868.8 4998 10 827.3 -9.09%,-3.70% 

C107 10 871.9 10.7 868.8 4998 10 827.3 0.00%,-5.12% 

C108 10 846.2 10.8 867.6 4876.1 10 827.3 0.00%,-2.23% 

C109 11 861.3 10.7 893.4 4268.9 10 827.3 -9.09%,-3.95% 

C109 10 870.1 10.7 893.4 4268.9 10 827.3 0.00%,-4.92% 

C201 4 618.6 4 631.8 5338.4 3 589.1 -25.00%,-4.77% 

C202 4 642.6 4.3 654.6 3885.7 3 589.1 -25.00%,-8.33% 

C203 4 618.2 4.2 663.1 4188.7 3 588.7 -25.00%,-4.77% 

C204 4 657.9 4 678.6 2941.2 3 588.1 -25.00%,-10.61% 

C205 3 601.2 3.8 616.3 3911.9 3 586.4 0.00%,-2.46% 

C206 3 642.5 4 637.8 3774.4 3 586 0.00%,-8.79% 

C206 4 614.7 4 637.8 3774.4 3 586 -25.00%,-4.67% 

C207 3 607.9 3.5 612.9 3530 3 585.8 0.00%,-3.64% 

C208 4 611.2 4 616.4 3759.2 3 585.8 -25.00%,-4.16% 

R101 22 1674.2 21.9 1696.4 5429.8 20 1637.7 -9.09%,-2.18% 

R101 21 1699.4 21.9 1696.4 5429.8 20 1637.7 -4.76%,-3.63% 

R102 18 1520.8 18.7 1522.9 4667.3 18 1466.6 0.00%,-3.56% 

R102 19 1492.1 18.7 1522.9 4667.3 18 1466.6 -5.26%,-1.71% 

R103 15 1264.5 15.3 1273.9 4955.3 14 1208.7 -6.67%,-4.41% 

R104 12 1042.6 12.4 1057.8 4034.7 11 971.5 -8.33%,-6.82% 

R105 16 1452.4 17.1 1458.6 4884.9 15 1355.3 -6.25%,-6.69% 

R105 17 1433.6 17.1 1458.6 4884.9 15 1355.3 -11.76%,-5.46% 

R106 15 1291 15.2 1313.2 5152.5 13 1234.6 -13.33%,-4.37% 

R107 12 1144.7 12.8 1144.3 4743.5 11 1064.6 -8.33%,-7.00% 

R107 13 1130 12.8 1144.3 4743.5 11 1064.6 -15.38%,-5.79% 

R108 11 998.7 11 1003.1 4075.4    

R109 14 1222.4 14.4 1251.4 4164.3 13 1146.9 -7.14%,-6.18% 

R110 13 1156.8 13.4 1156.2 4105.3 12 1068 -7.69%,-7.68% 

R110 14 1142.3 13.4 1156.2 4105.3 12 1068 -14.29%,-6.50% 

R111 13 1117.4 13.3 1136.6 4414.5 12 1048.7 -7.69%,-6.15% 

R112 11 1015.1 11.4 1040.1 4589.4    

R201 9 1261.7 10.8 1245.9 4281.9 8 1143.2 -11.11%,-9.39% 

R201 10 1246.7 10.8 1245.9 4281.9 8 1143.2 -20.00%,-8.30% 

R201 11 1227.2 10.8 1245.9 4281.9 8 1143.2 -27.27%,-6.84% 

R202 8 1100.3 9 1134.6 4720.7    

R203 6 940.6 6.7 983.1 3809.4    

R203 7 939.9 6.7 983.1 3809.4    

R204 4 838.9 4.9 826.7 3253.3    

R204 6 803.8 4.9 826.7 3253.3    

R204 5 808.5 4.9 826.7 3253.3    

R205 7 1034 7.8 1054.6 4841.7    
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Instance 

ABC 
Best Known Solution 

Improvement Best Avg. 

Vehicles Distance Vehicles Distance CPU Vehicles Distance 

R206 5 1060.6 6.2 986 4312.8    

R206 7 963.9 6.2 986 4312.8    

R206 6 970.4 6.2 986 4312.8    

R207 5 881.1 5.4 903.2 4072.2    

R208 3 780.5 3.6 793.7 3129.1    

R208 4 775.2 3.6 793.7 3129.1    

R209 6 932.9 6.3 973 3966.7    

R210 8 966.7 6.8 1000 4006.1    

R210 7 977.8 6.8 1000 4006.1    

R210 6 1020.3 6.8 1000 4006.1    

R211 5 825.4 5.6 860.5 3896.9    

RC101 18 1698 18.2 1734.1 3896.9 15 1619.8 -16.67%,-4.61% 

RC102 15 1517.1 15.3 1549.7 5380 14 1457.4 -6.67%,-3.94% 

RC103 13 1371.1 13.2 1384 4071.6 11 1258 -15.38%,-8.25% 

RC104 11 1214.6 11.7 1217 4755.2    

RC104 12 1211.7 11.7 1217 4755.2    

RC105 16 1604.9 17 1616.9 5193.9 15 1513.7 -6.25%,-5.68% 

RC106 15 1467.6 15 1481.6 4150.2    

RC107 13 1315.9 13.3 1337.2 5670.3 12 1207.8 -7.69%,-8.21% 

RC108 12 1190.9 12.3 1223.2 4881.9 11 1114.2 -8.33%,-6.44% 

RC201 9 1496.2 10.4 1387.2 4124.6 9 1261.8 0.00%,-15.67% 

RC201 10 1331.1 10.4 1387.2 4124.6 9 1261.8 -10.00%,-5.21% 

RC202 8 1169.4 8.7 1210.3 4778.5 8 1092.3 0.00%,-6.59% 

RC202 9 1168.6 8.7 1210.3 4778.5 8 1092.3 -11.11%,-6.53% 

RC203 5 1035.8 6.3 1031.9 4256.1    

RC203 6 979.5 6.3 1031.9 4256.1    

RC204 4 837.6 4.4 863.1 3323.7    

RC205 8 1249.7 8.9 1249.3 4608.5 7 1154 -12.50%,-7.66% 

RC205 9 1221.6 8.9 1249.3 4608.5 7 1154 -22.22%,-5.53% 

RC206 7 1137.4 7.5 1173.6 4594.6    

RC207 6 1061.7 6.4 1068.4 4103.3    

RC207 5 1069.7 6.4 1068.4 4103.3    

RC207 7 1043.9 6.4 1068.4 4103.3    

RC208 5 841.1 5.4 886.4 4069.1    
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