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ABSTRACT 
 
Vehicle-routing problems (VRP) have been studied in depth. Many variants of the 
problem exist, most of them trying to find a set of routes with the shortest distance 
possible for a fleet of vehicles. This paper combines two important variants, the 
stochastic VRP and the time-dependent VRP, to form and define the Stochastic Time-
Dependent VRP. Two algorithms for solving the stochastic time-depended VRP are 
compared, an efficient heuristic that is a new variant of the well-known saving algorithm, 
and a genetic algorithm. Both algorithms incorporate simulation that enables an estimate 
of each route’s probability of being the quickest. The two algorithms yield results that are 
at most 10% off the optimal solutions (when possible to compare), yet are very different 
in their running times. Such results are similar to the performance of the saving algorithm 
when compared to the capacitated vehicle-routing problem. 
 
 
INTRODUCTION 
 
The Vehicle-Routing Problem (VRP) is a common name for problems involving the 
construction of a set of routes for a fleet of vehicles. The vehicles start their routes at a 
depot, call at customers, to whom they deliver goods, and return to the depot. The 



 

 2

objective function for the vehicle-routing problem is to minimize costs by finding optimal 
routes, which are usually the shortest routes. The classic VRP (also known as Capacitated 
Vehicle Routing Problem – CVRP) is defined on a graph G=(V,E), where V={v0,v1,…,vn} 
is a set of vertices and E={(vi,vj):i≠j,vi,vj∈V } is a set of edges. Vertex v0 represents a 
depot, and the other vertex represents customers. A cost function, Cij, is associated with 
each edge of E. Each customer has a non-negative demand, di. A fleet of m identical 
vehicles of capacity Q are based at the depot. VRP consists of designing a set of, at most, 
m delivery or collection routes, such that (1) each route starts and ends at the depot, (2) 
each customer is called at exactly once and by only one vehicle, (3) the total demand on 
each route does not exceed Q, and (4) the total routing cost is minimized. For the CVRP, 
the cost function, Cij, represents edge distances, and therefore the optimal solution is a set 
of routes with the shortest length. 
 

VRP can be considered a generalization of the “Traveling-Salesman Problem” 
[1], which is an NP-Hard problem and, therefore, cannot be solved optimally within a 
reasonable running time. Since CVRP was first introduced in 1959, a large number of 
algorithms for solving it, based on various heuristics and meta-heuristics, have been 
developed. Also, extensions to the basic VRP were developed as well, aiming to produce 
more realistic models, usually by adding more constraints to the original problem. For a 
discussion about some of the most important algorithms developed so far and various 
extensions see [2], [3] and [4]. 
 

Two extensions are of interest to us, the stochastic VRP and the time-dependent 
VRP, which will be described in the following section. 

Time Dependent VRP 
 
In the real world, especially in urban areas, the travel time is dependent on both 

the distance between two customers and the time of day. Ignoring the fact that for some 
routes the travel time changes throughout the day, we may obtain solutions that are far 
from optimal. The Time-Dependent VRP (TDVRP) was developed in order to avoid just 
such a mistake. Whereas most VRP variants look for the shortest paths in terms of length, 
the TDVRP seeks the shortest paths in terms of travel time.  
 

There has been limited research related to time-dependent vehicle routing 
compared to other VRP models [5].  
 

The time dependent VRP was first formulated by Malandraki and Daskin ([6, 7]) 
using a mixed integer linear programming formulation. Malandraki and Daskin treated 
travel time as a function of both distance and the time of the day resulted in a piecewise 
constant distribution of the travel time. Although they only incorporated the temporal 
component of traffic-density variability, they acknowledged its importance. They 
developed two algorithms for solving the time-dependent vehicle-routing problem. The 
first algorithm was a greedy nearest-neighbor algorithm (three variants of the algorithm 
were introduced), and the second was a branch and bound-based algorithm that provided 
better solutions, but was suitable only for small problems. 
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Hill and Benton ([8]) considered a time dependent VRP (without time windows) 

and proposed a model based on time dependent traveling speeds that alleviates both the 
data collection and data storage problems inherent in time-dependent travel speed vehicle 
scheduling models. They also discussed the issue of developing algorithms to find near-
optimal vehicle schedules with time-dependent travel speeds .Computational results for 
one vehicle and five customers were reported. Ahn and Shin ([9]) discussed 
modifications to the savings, insertion, and local improvement algorithms to better deal 
with TDVRP. In randomly generated instances, they reported computation time 
reductions as a percentage of “unmodified” savings, insertion, and local improvement 
algorithms. Malandraki and Dial ([10]) proposed a “restricted” dynamic programming 
algorithm for the time dependent traveling salesman problem, i.e. for a fleet of just one 
vehicle. A nearest-neighbor type heuristic was used to solve randomly generated 
problems. Although it is argued that many different types of travel time functions can be 
handled by this algorithm, results are only reported for step functions. 
 

An important property for time dependent problems is the First In - First Out 
(FIFO) principal ([5, 9]). A model with a FIFO property guarantees that if two vehicles 
left the same location for the same destination (and traveled along the same path), the one 
that left first would never arrive later than the other. This is an intuitive and desirable 
property though it is not present in all models. Earlier formulations and solutions methods 
([6-8, 10]) do not guarantee the FIFO property. 
 

Ichoua et al. ([5]) introduced a model that guarantees the FIFO principle. This 
model is satisfied by working with step-like speed distributions and adjusting the travel 
speed whenever a vehicle crosses the boundary between two consecutive time periods. 
The algorithms that they developed, which were based on tabu-search meta-heuristics, 
provided better solutions for most test scenarios.  

 
Fleischmann et al. ([11]) utilized route construction methods already proposed in 

the literature, savings and insertion, to solve uncapacitated time dependent VRP with and 
without time windows. Fleischmann et al. assume travel times to be known between all 
pairs of interesting locations and constant within given time slots. Neighbor slots with 
similar travel times are joined to reduce memory requirements, and the transitions 
between slots are smoothed to ensure a FIFO property on travel times. Fleischmann et al. 
tested their algorithms in instances created from Berlin travel time data. Jung and 
Haghani ([12, 13]) proposed a genetic algorithm to solve time dependent problems. By 
formulating the problem as a mixed integer linear programming problem, they obtain 
lower bounds by relaxing most of the integer requirements. The lower bounds are 
compared with the primal solutions from the genetic algorithm to evaluate the quality of 
the solutions. Using randomly generated test problems, the performance of the genetic 
algorithm was evaluated by comparing its results with exact solutions.  

  
Van Woensel et al. ([14]) used a tabu search to solve CVRP with time dependent 

travel times (with no time windows). Approximations based on queuing theory and the 
volumes of vehicles in a link were used to determine the travel speed. ([15]) proposed an 
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algorithm based on ant colony heuristic approach and a local search improvement 
approach. The algorithm was tested using a real life network in Padua, Italy, and some 
variations of the Solomon problem set.   

Stochastic VRP 
 

A stochastic vehicle-routing problem arises when at least one problem variable is 
random [16]. A stochastic model is usually modeled in two stages [17]. In the first stage, 
a planned a-priori route is determined, followed by a realization of the random variables. 
In the second stage, corrective action, based on actual information, is applied to the 
solution of the first stage.  
 

VRP with stochastic travel time is frequently encountered in pickup and delivery 
problems such as those arising in truckload operations. Wang and Regan ([18]) have 
proposed models for this class of problems under the presence of time windows. 
 

Tillman [19] suggested a solution based on the saving algorithm for vehicle- 
routing problems with stochastic demands when there are a number of depots. Both 
Stewart and Golden [20] and Golden and Yee [21] presented a saving based on the CCP 
(constraints chance programming) model for the vehicle-routing problem with stochastic 
demands. Bertsimas [22] offered a number of algorithms for the solution of the vehicle- 
routing problem with stochastic customers. 
 

In VRP with Stochastic Travel Times (VRPSTT) travel times on the edges and 
service times at the vertices are random variables. Vehicles follow their planned routes 
and may incur a penalty if the route duration exceeds a given deadline. It is natural to 
make this penalty proportional to the elapsed route duration in excess of the deadline 
([23]). Another possibility is to define a penalty proportional to the uncollected demand 
within the time limit, as is the case in a money collection application studied by [24]. 
 
 Stochastic travel times were introduced into the vehicle-routing problem by 
Laporte, Louveaux, and Mercure [23], who presented a CCP model. Their aim was to 
find a set of paths that had a travel time that was no longer than a given constant value. 
The problem was solved optimally by means of an Integer L-shaped algorithm for 
10≤n≤20 and two to five travel time scenarios (each scenario corresponds to a different 
travel speed for the entire network). 
 

In a more recent study, Kenyon and Morton [25] have investigated properties of 
VRPSTT solutions and have developed bounds on the objective function value. They 
have developed two models for the stochastic VRP with random travel and service times 
and an unknown distribution. The first model minimizes the expected completion time, 
and the second model maximizes the probability that the operation is complete prior to a 
pre-set target time T. Both models are based on a heuristic that combines branch-and-cut 
and Monte-Carlo simulation which, if run to completion, terminates with a solution value 
within a preset percentage of the optimum. Using small instances (9-nodes and 28-nodes) 
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Kenyon and Morton showed that using their models solutions to VRPSTT can be 
significantly better than solutions obtained by solving the associated mean-value model. 

 
 
THE STOCHASTIC TIME-DEPENDENT VEHICLE-ROUTING PROBLEM  
 
The aim of this study was to develop a model for the Stochastic Time Dependent VRP 
(STDVRP). Since VRP is a hard optimization problem [2, 3], the complexity of the 
problem will remain the same as CVRP, at least, because of the time dimension and the 
stochastic properties of the problem. Such complexity calls for the development of an 
efficient heuristic. This algorithm provides a set of routes that have the minimal total 
travel time, taking into consideration the following properties: (1) for certain routes, the 
travel time varies during the day; (2) travel time is stochastic. 
  
Mathematical Formulation 
 
VRP can be represented by a complete graph G=(V,E), where V={v0,v1,..,vn} is a set of 
nodes representing the depot (v0) and the customers (v1,v2,…,vn), and 
E={(vi,vj):i≠j,vi,vj∈V} is a set of directed edges. A fleet of R trucks ({r1,r2,…rR}) of 
capacity D is available. For each customer, a fixed non-negative demand di is given 
(d0=0). A random cost function, Cij

t, which denotes the cost (travel time) of traveling 
from customer i to customer j starting at time t, is also given, where t is the time interval 
index and T is the total number of time intervals. The aim is to find a set of routes with 
the shortest travel time such that for a given probability (α) it will not exceed C*, and that 
C* is minimal, in which the following constraints hold: (1) each route starts and ends at 
the depot, (2) every customer is called at exactly once by only one vehicle, (3) every 
vehicle route has a total demand not exceeding maximum vehicle capacity D.  
 

This work assumes that the number of vehicles available is unlimited or equal to 
the number routes needed for an optimal solution under the given constraints.  
 

Let xij
tr donates a decision variable that is equal to 1 if vehicle Rr is assigned at 

time t to travel from customer i to customer j; otherwise, it is equal to 0. Since the cost 
function, Cij

t, is stochastic, we can define the probability of having a traveling distance of 

C* or less as *

0 0 0 1

n n T R
t tr

ij ij
i j t r

P C x C
= = = =

 
< 

 
∑∑∑∑ . 

 
It is now possible to define the formal stochastic time-dependent vehicle-routing problem 
The objective function is as follows: 

0 0 0 1

min
n n T R

t tr
ij ij

i j t r
Z C x

= = = =

= ∑∑∑∑   (1) 

 
under the following constraints: 
 

{ } { } { }0 0,1,..., , 1, 2,..., , 0,1,...,tr
iix i n r R t T= ∀ ∈ ∈ ∈  (2) 
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n n T
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d x D r R

= = =

 
≤ ∀ ∈ 

 
∑ ∑∑   (8) 

*

0 0 0 1

n n T R
t tr

ij ij
i j t r

P C x C α
= = = =

 
< ≥ 

 
∑∑∑∑   (9) 

{ } { } { } { }0,1 , 0,1,..., , 1,2,..., , 0,1,...,tr
ijx i j n r R t T∈ ∀ ∈ ∈ ∈  (10) 

 
Objective function (1) is the total average travel time ( t

ijC ). Constraint (2) simply 
states that it is impossible to move from one customer to itself (in our graph, edges such 
as (i,i) do not exist). Constraints (3) and (4) state that no more than one vehicle leaves the 
depot and goes to each one of the customers, and no more than one vehicle returns from 
each one of the customers to the depot. Constraints (5) and (6) state that only one vehicle 
serves each one of the customers. Constraint (7) is added for route continuity. Constraint 
(8) states that the capacity of customers for each route does not exceed the maximum 
capacity of a single vehicle. Constraint (9) is a chance constraint, stating that we are 
looking for a set of routes whose travel time for a given probability (α) will not exceed 
C*, and that C* is minimal. This constraint makes the problem a stochastic rather than a 
deterministic problem. Constraint (10) states that the decision variables can accept values 
only of 0 or 1. 
 
A Heuristic Algorithm for Solving STDVRP 
 
In this chapter we present a heuristic algorithm, based on the saving algorithm [26], for 
solving STDVRP. The Savings heuristic is one of the best known and remains widely 
used in practice to this day, despite some of its shortcomings ([3]). This algorithm was 
designed for solving deterministic CVRP, and many heuristics are based on it [19, 21, 
27]. It uses a simple, easy to understand and implement heuristic and therefore is 
commonly used. The saving algorithm yields fast, good results when compared with 
optimal solutions (although as of today, algorithms based on tabu-search are the best 
algorithms for solving VRP, for example the savings algorithm's average deviation from 
the best solution is 6.71% while the deviation of the Granular tabu search is 0.69% ([3])). 
For these reasons we choose the Savings algorithm as the base for our algorithm.  
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The presented heuristic algorithm, Savings-STDVRP, includes the following 
components in order to cope with stochastic and time-dependency: (1) transformation, (2) 
calculation, and (3) simulation. These components will be discussed next. 
 
The STDVRP Algorithm 
 
The STDVRP algorithm maintains two lists: (1) a solution list similar to the list used in 
the saving algorithm that is updated after each iteration; (2) a candidates list, which 
contains m routes that are picked according to their deterministic properties. The 
candidate list is then passed to a simulation that provides the route with the highest 
probability of being the quickest. This route is added to the solution list. 
 
Following is a short description of the algorithm. 
 
1. Create deterministic data based on the stochastic time-dependent data. 
2. Algorithm initialization with the creation of an initial solution set. The initial solution 

set is a set of n routes, each of which starts at the depot, visits one customer, and 
returns to the depot. There are no two routes that call at the same customer. 

3. Empty the candidates list. 
4. For all pairs of routes do: 

a. Merge the two routes to create a new route (from the last customer of the first 
route continue to the first customer of the second route). 

b. If the new route does not violate the problem's constraints do: 
i. Calculate the savings value of the pair of routes using the deterministic 

data. 
ii. If the saving value is zero or higher, add the pair of routes to the 

candidates list. Eventually the candidates list contains m pair of routes 
that have the highest values of savings. The number of candidates, m, 
is defined by the user. 

5. If the candidates list is empty the algorithm is finished, otherwise do: 
a. For each pair of routes stored in the candidates list, a simulation is performed 

r times in order to find the merged route with the highest probability of being 
the quickest. 

b. The merged route found in (a) is added to the solution list, and the original 
pair routes that were merged are removed from the list. 

c. Go to step 3 
6. Goto step 1, and use a different method. 
 
The algorithm is executed three times, each time using a different stochastic to 
deterministic encoder. The solution chosen is the best solution of the three runs. 
 
Creating Deterministic Data 
 
In order to cope with stochastic and time-dependent properties, the data is passed through 
"encoders", each of which produces different deterministic data. The deterministic data is 
used to estimate the savings value of each two pairs of paths. In each iteration, for m pairs 
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that have the highest estimated savings value, the true savings value is calculates using 
simulation, and the pair of paths that has the highest true saving value is merged to form a 
new path.  
 
 In our work the random cost function was defined as an empirical distribution 
function composed of a set of probability intervals. Such a definition is more flexible 
when estimating the travel time variance during a time period. 
 

In this study, three "encoders" were used for transforming the stochastic and time- 
dependent data to deterministic data: (1) average value - the average time for each time 
period and probability intervals; (2) best value - the minimal time for all time periods, 
regardless of the probability; (3) worst value - the maximal time for all time periods, 
regardless of the probability. 
 
Simulation 
 
Use of the deterministic information of the problem results in estimates of only certain 
aspects of the original problem and does not describe the stochastic nature of the 
problem. Therefore, simulation [28] is used in order to calculate the implicit value of 
each saving of the paths merged and the probability of a route’s being the quickest. 
 

Simulation works by traveling paths, which is done in the following way: For 
every edge we have the edge's length, ln, and a number of possible traveling speed, Snp

t, 
with their probabilities for each time interval. Assuming that our path is (a1,a2,..,an), we 
start at time t0=0 and calculate the traveling time from node a1 to node a2. This 
calculation is done by dividing the edge's length to a randomly picked possible speed 
from S(a1,a2)p

0 base on its probability. If traveling an edge cannot be done in a single time 
interval, we use the information of both current and the following time intervals in order 
to calculate the traveling time of the edge. We continue and calculate the traveling time 
of the rest of the edges, each edge starting time equals to the sum of the traveling times of 
all previous edges. The traveling time of a path equals to the sum of traveling times of all 
edges of the path. 
 

Each path is traveled w time, when w is determined by the user. The traveling 
times are stored in an array, and are sorted. The returned traveling time, C, returned by 
the simulation is defined as the traveling time stored in entry w·α of the array. Assuming 
that α=0.95, this means that in 95% of all cases, the actual traveling time will be shorten 
than C. 

It is possible to calculate the savings value of a given pair of routes by first 
finding the travel time of the first route, C1, using simulation, then simulation is used 
again to find the traveling time, C2, of the second route. The traveling time of the merged 
route, C3, is also calculated. The saving value of the pair of routes is C1+C2-C3. Again, 
assuming that α=0.95, this means that in 95% of all cases, the actual savings will be no 
higher than C1+C2-C3. 
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Algorithm's Performance 
 
The algorithm's performance should be analyzed in terms of (1) complexity and (2) 
accuracy of the algorithm's results compared to optimal solutions.  
 
Complexity 

Since VRPs belong to the NP-Hard set of problems, it is impossible to solve them within 
a reasonable amount of time. The Savings-STDVRP algorithm has a polynomial running 
time, which means that for problems involving a large number of customers, it is possible 
to arrive at a close to optimal solution in a reasonable running time.  

Assuming that we use the simplest data structures, the algorithm's complexity can 
easily be calculated. The algorithm begins with creating an initial solutions set, which is 
an O(n) operation. Then an iterative process begins, the first step of which is the 
initialization of the candidates list, which is an O(1) operation. Next, every pair of routes 
that can be merged is added to the candidates list. The operation of adding a merged route 
to the candidates list has the complexity of O(m), where m is the size of the candidates 
list. Since we have at most (n-1) by (n-1) pair of routes that can be added to the 
candidates list, the total complexity of adding all pairs of routes that can be merged to 
that list is O(n2m). The last operation of the iterative process is to search the candidates 
list for the pair of routes with the highest probability. For each pair of routes stored in the 
candidates list (m pairs of routes), the probability of its being the best is calculated by 
simulation. The simulation is carried out w times for each route (the two routes 
composing the pair and the merged route), making the total complexity equal to 
O(3wnm). The entire iterative process can be repeated, at most, n times and 3 times for 
each filter, making the total complexity of the entire algorithm equal to O(n)+3n(O(1)+ 
O(n2m)+ O(3wnm)), which is equal to O(3n3m+9wn2m+4n), usually referred to as 
O(n3m). 
 

From the algorithm complexity analysis we learn that the most influential factors 
on the algorithm's running time are the number of nodes (n) in the graph and the size of 
the candidates list (m). Experimental result (given in Table 1) show that an increase in the 
number of customers (n) does increase the running time of the algorithm, but not as 
expected, for example, from the algorithm complexity analysis we expect that the running 
time of a problem with 150 customers will be 27 times slower than a problem with 50 
customers, in reality it is only 8.5 (candidates list set to 1) to 3 (candidates list set to 1) 
times slower. Also, an increase in the size of the candidates list (m) increases the running 
time of the algorithm. From the algorithm complexity analysis it is expected that the 
running time of a problem with candidates list set to 15 will be 15 times slower than a 
problem where the candidates list is set to 1. In reality it is only 8.72 (50 customers) to 3 
times slower. These results can easily be explained by the fact that in the algorithm's 
analysis be ignored constraints satisfaction, which can dramatically decrease the number 
of iterations preformed by the algorithm. 

 
Table 1 – Running time as a function of number of nodes and candidates list size 
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Candidates list size Number of 
Customers 

Problem 
No. 1 3 5 10 15 

  Running 
time 

Relative 
running 

time 

Running 
time 

Relative 
running 

time 

Running 
time 

Relative 
running 

time 

Running 
time 

Relative 
running 

time 

Running 
time 

Relative 
running 

time 
1 3.438 1 6.984 2.031 10.828 3.15 19.641 5.713 27.625 8.035 
2 3.406 1 8.031 2.358 11.953 3.509 23.437 6.881 32.5 9.542 
3 3.125 1 8.109 2.595 12.359 3.955 21.594 6.91 33.578 10.745 
4 2.422 1 4.656 1.922 6.609 2.729 11.938 4.929 16.234 6.703 

50 

5 3.25 1 6.781 2.086 10.594 3.260 18.516 5.697 26.375 8.115 
 Avrg. 3.128 1 6.912 2.21 10.469 3.347 19.025 6.082 27.262 8.716 

6 4.578 1 7.078 1.546 9.687 2.116 15.844 3.461 22 4.806 
7 5.031 1 8.188 1.628 11.828 2.351 19.297 3.836 27.625 5.491 
8 3.766 1 5.516 1.465 7.125 1.892 11.063 2.938 14.672 3.896 
9 6.016 1 10.422 1.732 15.359 2.553 28.859 4.797 36.844 6.124 

75 

10 5.781 1 10.875 1.881 16.078 2.781 27.406 4.741 38.75 6.703 
 Avrg. 5.034 1 8.416 1.672 12.015 2.387 20.494 4.071 27.978 5.557 

11 11.423 1 20.219 1.770 29.016 2.540 49 4.290 72.391 6.337 
12 8.438 1 11.797 1.398 14.938 1.770 23.656 2.804 31.875 3.778 
13 10.156 1 16.109 1.586 21.313 2.099 34.938 3.440 46.75 4.603 
14 7.203 1 9.906 1.375 12.406 1.722 17.313 2.404 23.922 3.321 

100 

15 10.453 1 16.766 1.604 22.609 2.163 38.656 3.698 54.016 5.168 
 Avrg. 9.535 1 14.959 1.569 20.056 2.104 32.713 3.431 45.791 4.803 

16 28.484 1 40.594 1.425 51.313 1.801 79.438 2.789 105.844 3.716 
17 23.375 1 28.203 1.207 33.781 1.445 45.953 1.966 56.344 2.410 
18 28.641 1 39.313 1.373 48.969 1.710 74.031 2.585 96.234 3.360 
19 26.141 1 32.813 1.255 40.078 1.533 57.423 2.197 72.438 2.771 

150 

20 26.203 1 33.391 1.274 39.813 1.519 56 2.137 72.438 2.764 
 Avrg. 26.569 1.000 34.863 1.312 42.791 1.611 62.569 2.355 80.660 3.036 

 
Accuracy 
 
The algorithm's results were tested under a number of conditions:  
1. Data is deterministic. 
2. Data is stochastic, with the following factors: 

a. Influence of the percentage of edges acting stochastically. 
b. Influence of the range of travel times. 
c. Influence of the number of probability intervals on travel time for each edge in a 

time unit. 
3. Data is time dependent and stochastic. 
 

To our knowledge, no previous work involving stochastic and time dependency exists 
to which we could compare the results. Accordingly we created our own test scenarios, 
which were solved optimally (using brute-force approach). This made it possible to 
compare the Savings-STDVRP algorithm results to the optimal solution. Because of the 
complexity of finding an optimal solution, all our test scenarios included seven customers 
and a depot. All test scenarios used in this work are available online ([29]). 
 

Table 2 summarizes the scenarios used to test the Savings-STDVRP algorithm results 
versus the optimal solutions and the original saving algorithm. 
 

Table 2 - Scenarios (7 customers and a depote) and properties 

Scenario 
Set 

Number of 
time periods 

Number of 
probability intervals 

Percentage of edges with 
stochastic properties 

Speed range 
(Km/H) 
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Scenario 
Set 

Number of 
time periods 

Number of 
probability intervals 

Percentage of edges with 
stochastic properties 

Speed range 
(Km/H) 

1 2 1 0 80-120 
2 6 1 0 80-120 
3 12 1 0 80-120 
4 24 1 0 80-120 
5 1 3 25 50-120 
6 1 3 25 80-120 
7 1 5 25 50-120 
8 1 5 25 80-120 
9 1 3 50 50-120 

10 1 3 50 80-120 
11 1 5 50 50-120 
12 1 5 50 80-120 
13 1 3 100 50-120 
14 1 3 100 80-120 
15 1 5 100 50-120 
16 1 5 100 80-120 
17 1 100 100 50-120 
18 24 5 100 50-120 

 
Each scenario set contains 10 problems. Scenario sets 1-4 were designed to test 

the Savings-STDVRP algorithm when only a time dependency exists. Four groups of 
problems were created, with 2, 6, 12, and 24 time periods. Scenarios 5-17 were designed 
to test the Savings-STDVRP algorithm with only stochastic data. These test scenarios are 
constructed of 150 problems, which can be divided into three sub-groups: (1) problems 
that test the influence of a number of probability intervals on the algorithm's results; (2) 
problems that test the influence of the number of edges with stochastic properties on the 
algorithm's results; (3) problems that test the influence of the speed range on the 
algorithm's results. Scenario set 18 was designed to test the algorithm with both 
stochastic and time-dependent data. 
 

The average results of the test problems deviating from the optimal solution are 
summarized in Table 3. In this table, "Range" represents the range of gap to optimality of 
the various scenarios in the scenario set. "Average", and "Standard Deviation" also refer 
to the gap to optimality of the various scenarios in the scenario set. 

 
Table 3 - Results of the saving algorithm and the STDVRP algorithm as deviations from the optimal 

solution (all test scenarios are of 7 customers and a depot) 

Saving Algorithm  STDVRP Algorithm Scenario 
Set Range  Average  Standard 

Deviation Range Average Standard 
Deviation 

The influence of time dependency 
1 0-22.2 7.7 6.3 0-15.4 5.9 5.1 
2 0-15.3 5.1 5.4 0-15.3 4.3 5.7 
3 0-26.4 9.7 9.2 0-23.8 7.8 8.0 
4 0-21.1 11.3 8.7 0.5-18.7 11.4 6.4 

The influence of a number of probability intervals 
5 4.6-20.6 10.7 5.3 0-9.2 2.6 3.4 
7 7.2-40.2 21.7 11.1 0-15.6 6.0 5.0 
6 0-17.1 7.2 5.4 0-6.6 1.9 2.5 
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Saving Algorithm  STDVRP Algorithm Scenario 
Set Range  Average  Standard 

Deviation Range Average Standard 
Deviation 

8 2-22.1 7.9 6.2 0-8.9 3.2 2.7 
9 4.6-35.9 10.7 5.3 0-31.3 7.4 9.9 

11 5.7-27.5 18.9 7.3 0-15.4 4.9 4.4 
10 0.8-19.3 8.9 5.7 0-15.8 4.3 4.5 
12 0.2-18.6 9.3 5.0 0-15.3 3.3 4.5 
13 8.4-34.7 14.5 7.6 0-17.6 6.4 5.1 
15 6.0-55.2 21.7 15.5 0-12.1 4.3 4.6 
17 8-20.6 14.2 4.5 1.8-19.4 11.3 5.3 
14 0-18.2 7.7 6.5 0-14.3 5 5 
16 2.7-14.7 8 4.5 0-10 3.2 3.3 

The influence of the speed range 
5 4.6-20.6 10.7 5.3 0-9.2 2.6 3.4 
6 0-17.1 7.2 5.4 0-6.6 1.9 2.5 
7 7.2-40.2 21.7 11.1 0-15.6 6.0 5.0 
8 2-22.1 7.9 6.2 0-8.9 3.2 2.7 
9 4.6-35.9 10.7 5.3 0-31.3 7.4 9.9 

10 0.8-19.3 8.9 5.7 0-15.8 4.3 4.5 
11 5.7-27.5 18.9 7.3 0-15.4 4.9 4.4 
12 0.2-18.6 9.3 5.0 0-15.3 3.3 4.5 
13 8.4-34.7 14.5 7.6 0-17.6 6.4 5.1 
14 0-18.2 7.7 6.5 0-14.3 5 5 
15 6.0-55.2 21.7 15.5 0-12.1 4.3 4.6 
16 2.7-14.7 8 4.5 0-10 3.2 3.3 

The influence of the percentage of edges with stochastic properties 
5 4.6-20.6 10.7 5.3 0-9.2 2.6 3.4 
9 4.6-35.9 10.7 5.3 0-31.3 7.4 9.9 

13 8.4-34.7 14.5 7.6 0-17.6 6.4 5.1 
6 0-17.1 7.2 5.4 0-6.6 1.9 2.5 

10 0.8-19.3 8.9 5.7 0-15.8 4.3 4.5 
14 0-18.2 7.7 6.5 0-14.3 5 5 
7 7.2-40.2 21.7 11.1 0-15.6 6.0 5.0 

11 5.7-27.5 18.9 7.3 0-15.4 4.9 4.4 
15 6.0-55.2 21.7 15.5 0-12.1 4.3 4.6 
8 2-22.1 7.9 6.2 0-8.9 3.2 2.7 

12 0.2-18.6 9.3 5.0 0-15.3 3.3 4.5 
16 2.7-14.7 8 4.5 0-10 3.2 3.3 
 
In addition, the impact of the candidates' list size was also tested, using 20 

problems. Each problem was tested 5 times, each time with a different list size. The 
results are given in Table 4. 
 

Table 4 - Problem results as a function of the number of customers and the number of path pairs 
stored in the candidates list 

Candidates list size Number of 
Customers 

Problem No. 
1 3 5 10 15 

1 293.0 289.2 288.4 287.2 288.3 
2 286.3 273.2 270.9 270.4 269.2 
3 302.4 291.7 286.0 285.0 279.3 
4 329.6 323.1 324.4 325.6 326.2 

50 

5 292.9 281.3 284.3 281.1 278.0 



 

 13

6 516.3 507.3 509.3 502.3 505.5 
7 493.7 486.9 485.1 479.3 480.7 
8 616.1 604.5 604.6 601.0 599.6 
9 445.0 442.5 443.2 443.4 442.4 

75 

10 450.7 447.5 440.3 431.8 440.1 
11 565.6 560.7 557.1 548.3 541.0 
12 676.5 681.4 676.3 676.3 660.9 
13 585.0 582.2 582.4 581.3 574.4 
14 803.5 782.7 772.8 774.0 774.8 

100 

15 597.4 580.7 578.5 569.3 569.5 
16 851.8 846.4 829.0 832.5 833.4 
17 1058.6 1051.4 1058.2 1059.6 1056.9 
18 876.1 850.4 848.8 842.2 841.1 
19 968.9 964.2 960.3 951.9 956.4 

150 

20 957.5 952.3 935.1 942.2 934.5 
 

Finally, since we compared our Savings-STDVRP algorithm's result to both the 
optimal solution and the Savings algorithm's results for problems with 7 customers, it was 
important to observe if the ratio between the results of the original savings algorithm and 
the results of the Savings-STDVRP algorithm remains the same as the number of 
customers increase. What was found is that for problems with 10 customers, the results of 
the Savings-STDVRP were 13% better than results of the savings algorithm. For 200 
customers the results of the Savings-STDVRP were 2% better than the Saving algorithm. 
 
Comparison to Other Algorithms 
 
Genetic algorithms (GAs) have seen widespread use amongst modern meta-heuristics, 
and several applications to VRPs have been reported ([30-34]). Due to our interest in 
genetic algorithms, we implemented a simple genetic algorithm for solving STDVRP. 
The GA-STDVRP algorithm is based on the work of [35], who presented a genetic 
vehicle representation, designed to deal in an effective way with all the information that 
candidate solutions must encode. Experimental results show that this method is both 
effective and robust. 
 

For a discussion about the genetic algorithm, chromosome representation and the 
crossover and mutations operations, see [35]. The fitness function, which is different 
from the one proposed by [35], due to the nature of the problem, will be discussed next. 
 
Fitness function 
 
Generally speaking, the fitness function should return the total traveling time of a set of 
routes. Due to the stochastic nature of the problem, and the time dependency, this can be 
done using simulation in the same manner that it was used in the Savings STDVRP 
algorithm. Since using simulation increases dramatically the running time, a different 
approach for calculating the fitness function is used. The fitness function can be 
calculated using averages or simulation. For each generation, the fitness function of each 
chromosome is calculated using averages values. This is done to all chromosomes except 
to the chromosome that has the best fitness value (using averages), that its fitness value is 
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calculated using simulation. Since using averages for calculating the fitness values results 
is a biased fitness values and may cause the algorithm to ignore relevant chromosomes, 
we start calculating the fitness values of random chromosomes if there is no improvement 
over 20 generations. The number of chromosomes that their fitness values are calculated 
by simulation increases over time. If there is no improvement over 1000 generations or 
more, all fitness values are calculated using simulation.  
 
Algorithm Performance 
 
We first examined our implementation using a group of 10 instances, each containing 200 
customers, with no time-dependency and no stochastic data. Each instance was solved 
twice, once by using the Savings algorithm and one by using the genetic algorithm. Using 
the results of the savings algorithm as a seed for the first generation of the genetic 
algorithm and running the genetic algorithm for 5000 generations, we managed to receive 
results that are by average 5% better than the results of the savings algorithm. 
 

To evaluate the GA STDVRP algorithm two sets of problems, each containing 10 
problems, were randomly generated. The first set of problems (numbered 1 to 10) 
contained problems with 100 customers, and the second set (numbered 11 to 20) 
contained problems with 200 customers. 
 

The settings of the GA STDVRP algorithm are: Number of generations: 5000 or 
1050 generations without an improvement and CPU time is more than 3 hours (whatever 
comes first); Population size: 1000; Tournament selection with tourney size: 5; Elitist 
strategy (in each generation the 10 best chromosomes are automatically passed to the 
next generation); Crossover rate: 0.75; Mutation rates: swap: 0.05; inversion: 0.1; 
insertion: 0.05; displacement: 0.15. These settings are the same setting used by [35] 
(other settings as well as different elitism size and different selection methods were tested 
during the development stage, but no significant difference in the algorithm's result was 
found). For all test problems, 50% of the chromosomes of the initial populations were 
randomly generated and fixed, so it would match the stochastic time-dependent VRP's 
constraints. For the other 50% of the chromosomes, the results of the Savings algorithm 
were used as a seed, on which the mutation operation was used to create the new 
chromosomes. 
 

Each problem was solved by GA STDVRP and by Savings STDVRP algorithm 
([36]). In table 1 we present the result of each algorithm and each problem. For both 
algorithms we provide the running time. For the GA STDVRP we provide the best result 
and average result, and for the Savings STDVRP we provide the algorithm's result as well.  

 
Table 5 – GA STDVRP and Savings STDVRP results 

GA STDVRP Savings STDVRP Problem 
No. (Best) Result 

(traveling time) 
Running Time 
 (in seconds) 

Result 
 (traveling time) 

Running Time 
 (in seconds) 

1 17.39  9,286.53  18.91  17.98  0  
C

u
stom

2 83.10  10,121.44  85.73  8.75  
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GA STDVRP Savings STDVRP Problem 
No. (Best) Result 

(traveling time) 
Running Time 
 (in seconds) 

Result 
 (traveling time) 

Running Time 
 (in seconds) 

3 16.39  9,390.44  17.09  18.80  
4 16.55  12,858.64  17.15  23.55  
5 16.08  6,520.59  17.67  20.83  
6 30.23  5,985.73  31.76  12.89  
7 26.51  6,099.67  27.18  13.13  
8 16.95  6,530.75  18.44  16.09  
9 26.51  18,374.08  27.23  60.41  

 

10 43.87  8,807.23  47.34  9.48  
11 31.23  34,586.95  33.87  59.06  
12 27.54  16,481.63  27.96  63.20  
13 24.80  13,374.63  25.36  63.47  
14 27.98  25,951.44  28.68  113.20  
15 48.11  26,224.38  47.86  53.94  
16 37.97  11,595.56  38.55  51.95  
17 205.01  12,090.61  212.96  55.75  
18 38.54  19,906.13  39.06  96.28  
19 26.38  9,783.16  27.06  62.08  

200  C
ustom

ers 

20 62.01  10,771.47  67.20  110.06  
Average 41.16  13,737.05  42.85  46.55  

 
As we can see from the results presented in Table 5, the results of the GA-

STDVRP algorithm are better than the result of the Savings-STDVRP algorithm. In 
average for problems with 100 customers, the results of the GA-STDVRP are by average 
5% better than the results of the Savings-STDVRP. For problems with 200 customers, the 
results of GA-STDVRP are by average 3% better than the results of Savings-STDVRP.  
 

Yet, the running time of GA-STDVRP is significantly longer than the running 
time of Savings-STDVRP. In average, for problems with 100 customers, the running time 
of GA-STDVRP is 560 times longer than the running time of Savings-STDVRP. For 
problems with 200 customers, the running time of GA STDVRP is 457 times longer than 
the running time of Savings STDVRP.  
 
 
 
CONCLUSIONS 
 
This paper presented the Stochastic Time-Dependent VRP. A saving-based algorithm 
was also presented. Various problems, each with seven customers, were tested, and it 
seems that the algorithm results for the stochastic time-dependent VRP are similar to the 
results of the saving algorithm for CVRPs. Because the saving algorithm is well known 
and popular, the STDVRP algorithm is believed to demonstrate similar properties 
concerning the stochastic time-dependent vehicle-routing problem. 
 

From the results of these 20 problems, it seems that the STDVRP algorithm on 
average deviates from the optimal solution by about 6%, while the original saving 
algorithm deviates from the optimal solution by 17%. Cordeau et al. ([3]) compared a few 
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well-known algorithms and showed, among others, that when the saving algorithm is 
used for solving CVRP (the original problem that this algorithm was designed to solve), 
the deviation of the algorithm's results from the optimal (or best-known solution) was on 
average about 6%. Based on our findings for stochastic time-dependent vehicle-routing 
problems, the results of the STDVRP are similar to the results of the saving algorithm for 
CVRP.  
 

The algorithm’s complexity was calculated and found to be O(n3m), where n is the 
number of customers and m is the size of the candidates list. Based on a complexity 
analysis, we had expected that the running time of the algorithms would increase in linear 
proportion to the number of route pairs stored in the candidates list (m). In reality, we 
found, based on observations, that the running-time increase was moderate. 
 

It was also found that a candidates list of 3 to 5 yields the most significant 
improvement for the algorithm results. The use of a larger number of candidates does 
improve the results; however, the time devoted to search for the results increases linearly 
to the number of candidates and yields only an insignificant improvement when using a 
candidate list larger than 5.  
 

Genetic algorithms (GAs) have been widespread use amongst modern meta-
heuristics, and several applications to VRPs have been reported ([30-34]). The algorithm 
was also tested in comparison to a generic genetic algorithm. The GA-STDVRP 
algorithms is bases on the work of [35], who presented a genetic vehicle representation, 
designed to deal in an effective way with all the information that candidate solutions must 
encode. Experimental results show that this method is both effective and robust. The GA-
STDVRP algorithm presented results that are about 1.05 times better than the result of 
the Savings-STDVRP (for problems with 100 and 200 customers), yet with running time 
is at least 200 times slower than the Savings-STDVRP. This means that in order to 
achieve a result that about 5% better than the results of the Savings-STDVRP algorithm 
using the GA-STDVRP algorithm more than two hours (for problems with 100 
customers, or five hours for problems with 200 customers) has to be spent compared to 
the 20 seconds spent by the Savings-STDVRP algorithm (73 seconds for problems with 
200 customers). It is important to note that the GA-STDVRP was implemented mainly 
for accuracy comparison rather than performance and efficiency. It is believed that the 
GA algorithm can be implemented more efficiently. 
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