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ABSTRACT

Vehicle-routing problems (VRP) have been studied in depth. Many variants of the problem exist, most of them trying to
find a set of routes with the shortest distance possible for a fleet of vehicles. This paper combines two important variants,
the stochastic VRP and the time-dependent VRP, to form and define the Stochastic Time-Dependent VRP. An efficient
heuristic that is a new variant of the well-known saving algorithm is introduced. The algorithm incorporates simulation
that enables an estimate of each route’s probability of being the quickest. This new algorithm yields fast results that are
10% higher than optimal solutions. Such results are similar to the performance of the saving algorithm when compared
to the capacitated VRP.
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1. INTRODUCTION

The Vehicle-Routing Problem (VRP) is a common name
for problems involving the construction of a set of routes
for a fleet of vehicles. The vehicles start their routes at a
depot, call at customers, to whom they deliver goods, and
return to the depot. The objective function for the
vehicle-routing problem is to minimize costs by finding
optimal routes, which are usually the shortest routes. For
the basic VRP (known as CVRP) the following
constraints must held (1) each route starts and ends at the
depot, (2) each customer is called at exactly once and by
only one vehicle and (3) the total demand on each route
does not exceed the total capacity of one truck.

VRP can be considered a generalization of the
“Traveling-Salesman Problem” [9], which is an NP-Hard
problem and, therefore, cannot be solved optimally
within a reasonable running time. Since the problem was
first introduced in 1959, a large number of algorithms for
solving it, based on various heuristics and meta-heuristics,
have been developed ([2-4, 6-8, 10, 12, 14, 15, 19]).

Simultaneously with the development of heuristics and
meta-heuristics, a number of researchers developed
extensions to the basic VRP. The goal was to produce
more realistic models, models that would be adapted to a
larger number of real-world constraints.

Among  these  variants  of  VRPs,  we  can  find  the  Split
Delivery VRP (SDVRP) [1], VRP with Time Windows
(VRPTW) [6], and the Multi-Depot VRP (MDVRP) [14].

In the real world, especially in urban areas, the travel time
is dependent on both the distance between two customers
and the time of day. Ignoring the fact that for some routes
the  travel  time  changes  throughout  the  day,  we  may

1  2009-CIE39-FR.

obtain solutions that are far from optimal. The Time-
Dependent VRP (TDVRP) was developed in order to
avoid just such a mistake. Whereas most VRP variants
look for the shortest paths in terms of length, the TDVRP
seeks the shortest paths in terms of travel time.

There has been limited research related to stochastic
time-dependent VRP compared to other VRP models [15].

One of the first studies that treated travel time as a
function of both distance and the time of the day resulted
in a piecewise constant distribution of the travel time.
Although the researchers, Malandraki and Daskin [18],
only incorporated the temporal component of traffic-
density variability, they acknowledged its importance.
They developed two algorithms for the problem (1) A
greedy algorithm (three variants of the algorithm were
introduced), and (2) a branch and bound-based algorithm
that provided better solutions, but was suitable only for
small problems.

Ichoua, Gendreau, and Potvin [15] introduced a model
that guaranteed that if two vehicles left the same location
for the same destination (and traveled along the same
path), the one that left first would never arrive later than
the other (the FIFO principle). This model is satisfied by
working with step-like speed distributions and adjusting
the travel speed whenever a vehicle crosses the boundary
between two consecutive time periods. Their tabu-search
algorithm provided better solutions for most test
scenarios.

A stochastic VRP arises when at least one problem
variable is random [11]. A stochastic model is usually
modeled in two stages. In the first stage, a planned a-
priori route is determined, followed by a realization of
the random variables. In the second stage, corrective



action, based on actual information, is applied to the
solution of the first stage.

Tillman [21] suggested a solution based on the saving
algorithm for multi-depot VRPs with stochastic demands.
Both Stewart and Golden [20] and Golden and Yee [13]
presented a saving based on the CCP model for VRP with
stochastic demands. Bertsimas [5] offered a number of
algorithms for the solution of VRP with stochastic
customers.

Stochastic travel times were introduced into VRP by
Laporte, Louveaux, and Mercure [17], who presented a
CCP model. Their aim was to find a set of paths that had
a travel time that was no longer than a given constant
value. Kenyon and Morton [16] developed two models
for the stochastic VRP with random travel and service
times and an unknown distribution. The first model
minimizes the expected completion time, and the second
model maximizes the probability that the operation is
complete prior to a pre-set target time T. Both models
used the branch-and- cut technique.

2. THE STOCHASTIC TIME-DEPENDENT
VEHICLE-ROUTING PROBLEM

The  aim  of  this  study  was  to  develop  a  model  for  the
Stochastic Time-Dependent VRP (STDVRP). Since VRP
is a hard optimization problem, the complexity of the
problem will remain the same as CVRP, at least, because
of the time dimension and the stochastic properties of the
problem. Such complexity calls for the development of
an efficient heuristic. This algorithm provides a set of
routes that have the minimal total travel time, taking into
consideration the following properties: (1) for certain
routes, the travel time varies during the day; (2) travel
time is stochastic.

2.1 Optimal problem formulation

VRP can be represented by a complete graph = ( , ),
where = { , , . . , } is a set of nodes representing
the depot ( ) and the customers ( , , … , ), and =
{( , ): , , } is a set of directed edges. A fleet
of   trucks ({ , , … } ) of capacity   is available.
For each customer, a fixed non-negative demand  is
given  ( = 0 ). A random cost function,  , which
denotes the cost (travel time) of traveling from customer
 to customer  starting at time , is also given, where
 is the time interval index and  is the total number of

time intervals. The aim is to find a set of routes with the
shortest travel time in which the following constraints
hold: (1) each route starts and ends at the depot, (2) every
customer is called at, exactly once, by only one vehicle,
(3) every vehicle route has a total demand which does not
exceed maximum vehicle capacity . In this work the
number of vehicles available is unlimited or equal to the
number routes needed for an optimal solution.

Let  donates a decision variable that is equal to 1 if

vehicle   is assigned at time   to travel from
customer   to customer  ;  otherwise,  it  is  equal  to  0.
Since the cost function, , is stochastic, we can define
the probability of having a traveling distance of  or
less as ( < ).

It is now possible to define the formal stochastic time-
dependent VRP. The objective function is as follows:

= (1)

under the following constraints:

= 0 {0,1, … , }, {1,2, … , },
{0,1, … , }

(2)

1 {1,2, … , } (3)

1 {1,2, … , } (4)

= 1 {0,1, … , }, (5)

= 1 {0,1, … , }, (6)

= 0

{1,2, … , },
{0,1, … , }

(7)

{1,2, … , } (8)

< (9)

{0,1} (10)

Objective function (1) is the total average travel time
( ). Constraint (2) simply states that it is impossible to
move from one customer to itself. Constraints (3) and (4)
state that no more than one vehicle leaves the depot and
goes to each one of the customers, and no more than one
vehicle  returns  from  each  one  of  the  customers  to  the
depot. Constraints (5) and (6) state that only one vehicle
serves each one of the customers. Constraint (7) is added
for route continuity. Constraint (8) states that the capacity
of customers for each route does not exceed the
maximum capacity of a single vehicle. Constraint (9) is a
chance constraint, stating that we are looking for a set of
routes whose travel time for a given probability ( ) will



not exceed , and that  is minimal. This constraint
makes the problem a stochastic rather than a
deterministic problem. Constraint (10) states that the
decision variables can accept values only of 0 or 1.

2.2 Handling Stochastic and Time-Dependent
Properties

The STDVRP heuristic algorithm is based on the saving
algorithm [7], with the following components: (a)
transformation, (b) calculation, and (c) simulation.

The saving algorithm is simple and yields fast, good
results when compared with optimal solutions. The
algorithm was designed for solving deterministic CVRP,
and many heuristics are based on it [13, 19, 21]. In order
to cope with stochastic and time- dependent properties,
the data is passed through filters, each of which produces
different deterministic data. This transformation step
enables building a candidate list composed of different
deterministic estimators. The list is used to calculate
routes, which in turn are analyzed by a simulation that
labels each route with its probability of being the best.

In our work the random cost function was defined as an
empirical distribution function composed of a set of
probability intervals. Such a definition is more flexible
when estimating the travel time variance during a time
period.

In this study, three filters were used for transforming the
stochastic and time-dependent data to deterministic data:
(1) average value - the average time for each time period
and probability intervals; (2) best value - the minimal
time for all time periods, regardless of the probability; (3)
worst value - the maximal time for all time periods,
regardless of the probability.

Use of the deterministic information of the problem
results in estimates of only certain aspects of the original
problem and does not describe the stochastic nature of the
problem. Therefore, simulation is used in order to
calculate the implicit value of each saving of the paths
merged and the probability of a route’s being the quickest.

2.3 The STDVRP Algorithm

The STDVRP algorithm maintains two lists: (a) a
solution list similar to the list used in the saving algorithm
that is updated after each iteration; (b) a candidates list,
which contains m routes that are picked according to their
deterministic properties. The candidate list is then passed
to a simulation that provides the route with the highest
probability of being the quickest. This route is added to
the solution list.

Following is a short description of the algorithm.
1. Algorithm initialization with the creation of an initial

solution set. The initial solution set is a set of n routes,
each of which starts at the depot, visits one customer,

and returns to the depot. There are no two routes that
call at the same customer.

2. While there are possible routes to be merged:
a. A new merged route cannot violate the problem's

constraints. The saving value is calculated using the
deterministic data.

b. If the saving is zero or higher, the new merged route
is added to the candidates list. Eventually the
candidates list contains   routes that have the
highest values of savings. The number of candidates,

, is defined by the user.
c. For each merged route stored in the candidates list,

a simulation is performed  times in order to find
the route with the highest probability of being the
quickest.

d. The new route is added to the solution list, and the
original routes that were merged are removed from
the list.

e. Return to loop.

The algorithm is executed three times, each time using a
different stochastic to deterministic filter. The solution
chosen is the best solution of the three runs.

3. ALGORITHM PERFORMANCE

The algorithm's performance should be analyzed in terms
of (a) complexity and (b) accuracy of the algorithm's
results compared to optimal solutions.

3.1 Complexity

Since VRPs belong to the NP-Hard set of problems, it is
impossible to solve them within a reasonable amount of
time. The STDVRP algorithm has a polynomial running
time, which means that for problems involving a large
number of customers, it is possible to arrive at a close to
optimal solution in a reasonable running time

Assuming that we use the simplest data structures, the
algorithm's complexity can easily be calculated. The first
step, creating an initial solutions set, is an ( )
operation. Then an iterative process begins, the first step
of which is the initialization of the candidates list, which
is an (1) operation. Next, every pair of routes that can
be merged is added to the candidates list. The operation
of adding a merged route to the candidates list has the
complexity of ( )  where   is  the  size  of  the
candidates list. Since we have at most ( 1) by (
1) pair of routes that can be added to the candidates list,
the total complexity of adding all pairs of routes that can
be merged to that list is ( ). The last operation of
the iterative process is to search the candidates list for the
pair of routes with the highest probability. For each pair
of routes stored in the candidates list (  pairs of routes),
the probability of its being the best is calculated by
simulation. The simulation is carried out   times for
each route (the two routes composing the pair and the
merged route), making the total complexity equal to

(3 ). The entire iterative process can be repeated,



at most, n times and 3 times for each filter,  making the
total complexity of the entire algorithm equal

(3 + 9 + 4 ),  usually  referred  to  as
( ).

We learn from the algorithm complexity analysis that the
most influential factors on the algorithm's running time
are the number of nodes ( ) in the graph and the number
of route pairs (  ) stored in the candidates list. The
influence of these two factors was tested using 20 test
scenarios,  5  with  50  customers,  5  with  75  customers,  5
with 100 customers, and 5 with 150 customers, as well as
5 scenarios with 1, 3, 5, 10, and 15 candidates,
respectively. The results are shown in Figure 1 and Figure
2.

Figure 1 – The relative execution time versus number of customers
(each measurement is compared to the execution time of a problem

with 50 customers with the same number of candidates)

Figure 2 - Execution time versus candidates’ list size

3.2 Accuracy

The algorithm's results were tested under a number of
conditions:
1. Data is deterministic.
2. Data is stochastic, with the following factors:

a. Influence of the percentage of edges acting
stochastically.

b. Influence of the range of travel times.
c. Influence of the number of probability intervals

on travel time for each edge in a time unit.
3. Data is time dependent and stochastic.

To our knowledge, no previous work involving stochastic
and time dependency exists to which we could compare
the results. Accordingly we created our own test
scenarios, which were solved optimally (by calculating
the travel time of all possible sets of paths and comparing
them against the problem's constraints). This made it
possible to compare the STDVRP algorithm results to the
optimal solution. Because of the complexity of finding an
optimal solution, all our test scenarios included seven
customers and a depot.

Scenarios 1-4 were designed to test the STDVRP
algorithm when only time dependency exists. Four
groups of problems were created, with 2, 6, 12, and 24
time periods, each group containing ten problems.
Scenarios 5-16 were designed to test the STDVRP
algorithm with only stochastic data. These test scenarios
are constructed of 150 problems, which can be divided
into three sub-groups: (1) testing the influence of a
number of probability intervals on the algorithm results
(scenarios 5,7; 6,8; 9,11; 10,12; 13,15 and 14,16); (2)
testing the influence of the number of edges with
stochastic properties on the algorithm results (scenarios
5,9,13; 6,10,14; 7,11,15 and 8,12,16) ; (3) testing the
influence of the speed range on the algorithm results
(scenarios 5,6; 7,8; 9,10; 11,12; 13,14 and 15,16).
Scenario 17 was designed to test the algorithm when both
stochasticity and time-dependency exist.

The average results of the test scenarios deviating
from the optimal solution are summarized in the
following table.

Saving Algorithm STDVRP Algorithm
Scenario Range Average Standard

Deviation
CPU Time

(Sec.)
Range Average Standard

Deviation
CPU Time

(Sec.)
1 0-22.2 7.7 6.3 0.1766 0-15.4 5.9 5.1 0.3969
2 0-15.3 5.1 5.4 0.1594 0-15.3 4.3 5.7 0.3500
3 0-26.4 9.7 9.2 0.1578 0-23.8 7.8 8.0 0.3406
4 0-21.1 11.3 8.7 0.1500 0.5-18.7 11.4 6.4 0.3359
5 4.6-20.6 10.7 5.3 0.1453 0-9.2 2.6 3.4 0.3641
6 0-17.1 7.2 5.4 0.1687 0-6.6 1.9 2.5 0.4093
7 7.2-40.2 21.7 11.1 0.1609 0-15.6 6.0 5.0 0.3968
8 2-22.1 7.9 6.2 0.1609 0-8.9 3.2 2.7 0.3968
9 4.6-35.9 10.7 5.3 0.1671 0-31.3 7.4 9.9 0.3812
10 0.8-19.3 8.9 5.7 0.1765 0-15.8 4.3 4.5 0.3969
11 5.7-27.5 18.9 7.3 0.1625 0-15.4 4.9 4.4 0.4093
12 0.2-18.6 9.3 5.0 0.1796 0-15.3 3.3 4.5 0.4250
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Saving Algorithm STDVRP Algorithm
Scenario Range Average Standard

Deviation
CPU Time

(Sec.)
Range Average Standard

Deviation
CPU Time

(Sec.)
13 8.4-34.7 14.5 7.6 0.1609 0-17.6 6.4 5.1 0.3828
14 0-18.2 7.7 6.5 0.2804 0-14.3 5 5 0.3968
15 6.0-55.2 21.7 15.5 0.1890 0-12.1 4.3 4.6 0.3473
16 2.7-14.7 8 4.5 0.2062 0-10 3.2 3.3 0.4859
17 0.4-38 17.6 11 0.1789 19.6-0 6.1 6.1 0.4351

Table 1 - Results of the saving algorithm and the STDVRP algorithm as deviations (AMD 64 X2 5600+, 2GB, WinXP)

In addition, the impact of the candidates list size was also
tested, using 20 problems. Each problem was tested 5

times, each time with a different list size. The results are
given in the following table.

Number of Customers Problem No. Candidates list size
1 3 5 10 15

50

1 293.0 289.2 288.4 287.2 288.3
2 286.3 273.2 270.9 270.4 269.2
3 302.4 291.7 286.0 285.0 279.3
4 329.6 323.1 324.4 325.6 326.2
5 292.9 281.3 284.3 281.1 278.0

75

6 516.3 507.3 509.3 502.3 505.5
7 493.7 486.9 485.1 479.3 480.7
8 616.1 604.5 604.6 601.0 599.6
9 445.0 442.5 443.2 443.4 442.4
10 450.7 447.5 440.3 431.8 440.1

100

11 565.6 560.7 557.1 548.3 541.0
12 676.5 681.4 676.3 676.3 660.9
13 585.0 582.2 582.4 581.3 574.4
14 803.5 782.7 772.8 774.0 774.8
15 597.4 580.7 578.5 569.3 569.5

150

16 851.8 846.4 829.0 832.5 833.4
17 1058.6 1051.4 1058.2 1059.6 1056.9
18 876.1 850.4 848.8 842.2 841.1
19 968.9 964.2 960.3 951.9 956.4
20 957.5 952.3 935.1 942.2 934.5

Table 2 - Problem results as a function of the number of customers and the number of path pairs stored in the candidates list

3. CONCLUSIONS

This paper presented the Stochastic VRP. A saving-based
algorithm was also presented. Various problems, each
with seven customers, were tested, and it seems that the
algorithm results for the stochastic time-dependent VRP
are similar to the results of the saving algorithm for
capacitated VRPs. Because the saving algorithm is well
known and popular, the STDVRP algorithm is believed
to demonstrate similar properties concerning the
stochastic time-dependent VRP.

An analysis of 190 different test problems found four
main characteristics of the STDVRP algorithm:

1. It  increases  the  number  of  time  periods  in  the
problem, thus enlarging the gap between the solution
of both the saving algorithm and the STDVRP
algorithm compared to the optimal solution.

2. It increases the number of stochastic edges, thereby
increasing the gap between the STDVRP algorithm
solution and the optimal solution.

3. It increases the number of probability intervals for
travel time for an edge, widening the gap between
both the saving algorithm and the STDVRP
algorithm solution compared to the optimal solution.

4. The number of probability intervals for travel for an
edge has a smaller effect than the number of
stochastic edges when compared to the optimal
solution.

From the results of these 20 problems, it seems that the
STDVRP algorithm on average deviates from the optimal
solution by about 6%, while the original saving algorithm
deviates from the optimal solution by 17%. Cordeau et al.
([8]) compared a few well-known algorithms and showed,
among others, that when the saving algorithm is used for
solving CVRP (the original problem that this algorithm
was designed to solve), the deviation of the algorithm's
results from the optimal (or best-known solution) was
about 6% on average. Based on our findings for
stochastic time-dependent vehicle-routing problems, the
results  of  the  STDVRP are  similar  to  the  results  of  the
saving algorithm for CVRP.

The algorithm’s complexity was calculated and found to
be ( ), where  is the number of customers and m
is the size of the candidates list. Based on a complexity
analysis, we had expected that the running time of the
algorithms would increase in linear proportion to the
number of route pairs stored in the candidates list ( ). In
reality, based on observations, we found that the running-
time increase was moderate.



It was also found that a candidates list of 3 to 5 yields the
most significant improvement for the algorithm results.
Using a larger number of candidates improves the
STDVRP algorithm's results; however, the time devoted
in searching for results increases linearly to the number
of candidates and yields only an insignificant
improvement when using a candidate list larger than 5.
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