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Abstract
One of most important logistics problems in the field of transportation and distribution

is  the  Vehicle  Routing  Problem  (VRP).  In  general,  VRP  is  concerned  with  the

determination of a minimum-cost set of routes for distribution and pickup of goods for a

fleet of vehicles, while satisfying given constraints.

Today, most VRPs are set up with a single objective function, minimizing costs,

ignoring the fact that most problems encountered in logistics are multi-objective in nature

(maximizing customers’ satisfaction and so on), and that for both deterministic and

stochastic VRPs, the solution is based on a pre-determined set of routes. Technological

advancements make it possible to operate vehicles using the real-time information.

The problem considered in this research is the Real-Time Multi-Objective VRP. In this

research, the following objectives will be addressed: (1) Minimizing the total traveling

time, (2) Minimizing the number of vehicles, (3) Maximizing customers' satisfaction and

(4) Maximizing drivers' satisfaction, while considering constraints such as (1) Time

Dependency and (2) Soft time windows.

The first stage in solving the multi-objective vehicle routing problem was to formulate

the problem as a mixed integer linear programming problem on a network. This includes

the mathematical formulation of both the five objectives as well as the various

constraints.

Since VRP is a NP-Hard problem, it cannot be solved to optimality using conventional

methods. It is therefore, essential to develop an efficient heuristic algorithm for solving it.

Based on literature review, three evolutionary algorithms have been chosen for solving

the real-time multi-objective VRP. The three algorithms are an improved version of the

vector evaluated genetic algorithm (VEGA), the SPEA2 algorithm and a vector evaluated

artificial bee colony based algorithm. For all three algorithms, since a candidate solution

to an instance of the VRP must specify the number of vehicles required, the partition of

the  demands  through  all  these  vehicles;  the  delivery  order  for  each  route  as  well  as

waiting time at each customer; therefore, solution's representation was considered and

described.
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A fitness function is a particular type of objective function that is used to summarize, as

a single figure of merit, how close a given design solution is to achieving the set aims.

Evolutionary algorithms, at each iteration, delete the n worst solutions, and replace them

with n new ones. Each solution, therefore, needs to be awarded a figure of merit, to

indicate how close it came to meeting the overall specification; this is done using the

fitness function.

Sometimes, fitness approximation may be appropriate, especially if (1) fitness

computation  time  of  a  single  solution  is  extremely  high,  (2)  precise  model  for  fitness

computation is missing or (3) the fitness function is uncertain or noisy. In all three

algorithms presented, the fitnesses of all five objective functions have to be calculated.

Due to the stochastic nature of travel time, to get accurate values from the fitness

functions, simulation has to be used. However, simulation is a time-consuming process,

while a fast algorithm is necessary when coping with real-time problems, which is the

final goal of this study.

Usually, when solving a multi-objective optimization problem, the result is a set of non-

dominated solutions, from which, the decision maker has to choose his preferred

alternative. However, since the final goal is an automated system, the TOPSIS method, a

mechanism for choosing a preferred solution from a set of non-dominated solutions has

been implemented. It was shown that the running time of the algorithms can be increased

by use an "approximated" fitness function, without influencing their accuracy.

Furthermore, when using "approximated" fitness functions, the algorithms converge to

the best solution, much faster than when using exact fitness functions.

Other parameters of the algorithms, such as waiting time, and shape of the satisfaction /

dissatisfaction functions were also tested.

Finally, the three algorithms were compared using a case study, based on two real-world

transportation networks (urban and interurban). The case study was performed using

simulation.

The result of the case study shows that in an urban network, when using a linear

dissatisfaction function, the VEGA algorithm performs best. When each customer has a

different priority,  under the same conditions,  best  results  were obtained using either the

SPEA2 or the VE-ABC algorithms.
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In an urban network and a dissatisfaction function that represents customers who don't

like that a supplier is either early or late, and in an interurban network with both types of

dissatisfaction network, the results of all algorithms were the same.

From  the  result,  it  can  be  concluded,  that  the  VEGA  algorithm  when  used,  although

considered old and with inferior results, can provide solutions equal in quality to the

solutions obtained from more sophisticated and more recent algorithms. This is

important, since the VEGA algorithm has an advantage in the simplicity of

implementation and running speed compared with other algorithms.
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1. Introduction

1.1. Background and Motivation

 A supply chain is defined as a set of three or more entities (organizations or

individuals) directly involved in the upstream and downstream flows of products,

services, finances, and/or information from a source to a customer (Mentzer et al., 2001).

The supply chain encompasses every effort involved in producing and delivering a final

product or service, from the supplier's supplier to the customer's customer (Koctas, 2006).

Supply-chain management (SCM) refers to the management of materials, information,

and funds across the entire supply chain, from suppliers through manufacturing and

distributing, to the final consumer. It also includes after-sales services and reverse flows

such as handling customer returns and recycling of packaging and discarded products

(Pyke & Johnson, 2001).

Supply chain management has generated substantial interest in recent years. Managers

in many industries now realize that actions taken by one member of the chain can

influence the profitability of all others in the chain (Pyke & Johnson, 2001).

Organizations that have achieved supply chain integration success report lower

investments in inventory, a reduction in the cash flow cycle time, reduced cycle times,

lower material acquisition costs, higher employee productivity, increased ability to meet

customer requested dates (including short-term increases in demand), and lower logistics

costs (Lummus & Vokurka, 1999).

While supply chain planning has attracted significant attention due to its critical impact

on customer service, cost effectiveness, and, thus, competitiveness in increasingly

demanding global markets (Giaglis, Minis, Tatarakis & Zeimpekis, 2004), supply chain

execution has received less attention, at least as far as real-time decision making and risk

management are concerned. Processes such as stock control and warehouse management

have been thoroughly investigated and supported; improvement opportunities still lie in

the area of distribution management (Ehrgott, 2005; Gendreau & Potvin, 1998; Ichoua,

Gendreau & Potvin, 2003). The importance of distribution management has motivated

intense theoretical work and the development of efficient models and algorithms. The

most important model in distribution management is the vehicle routing problem (VRP).
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In general, VRP concerns the determination of a minimum-cost assignment of a number

of vehicles to deliver goods to (or pick up goods from) a set of n customers while

satisfying given constraints. Each of the vehicles is assigned to a route, which specifies

an ordered subset of the customers,  with each route starting and ending at  a fixed point

called the depot (Administration, 2004).

VRPs are frequently used to model real cases. However, they are often set up with the

single objective of minimizing the cost of the solution, despite the fact that the majority

of the problems encountered in industry, particularly in logistics, are multi-objective in

nature. In real-life, for instance, there may be several costs associated with a single tour.

Moreover, the objectives may not always be limited to cost. In fact, numerous other

aspects, such as balancing workloads (time, distance ...), can be taken into account simply

by adding new objectives (Jozefowiez, Semet & Talbi, 2008).

Traditionally, vehicle routing plans are based on deterministic information about

demands,  vehicle  locations  and  travel  times  on  the  roads.  What  is  likely  to  distinguish

most  distribution  problems  today  from  equivalent  problems  in  the  past,  is  that

information that is needed to come up with a set of good vehicle routes and schedules is

dynamically revealed to the decision maker (Psaraftis, 1995). Until recently, the cost of

obtaining real-time traffic information was deemed too high in comparison with the

benefits of real time control of the vehicles. Furthermore, some of the information needed

for real time routing was impossible to acquire. Advancement of the technology in

communication systems, the geographic information system (GIS) and the intelligent

transportation  system  (ITS)  make  it  possible  to  operate  vehicles  using  the  real-time

information about travel times and the vehicles' locations (Ghiani, Guerriero, Laporte &

Musmanno, 2003).

While traditional VRPs have been thoroughly studied, limited research has to date been

devoted to multi-objective, real-time management of vehicles during the actual execution

of the distribution schedule, in order to respond to unforeseen events that often occur and

may deteriorate the effectiveness of the predefined and static routing decisions.

Furthermore, in cases when traveling time is a crucial factor, ignoring travel time

fluctuations (due to various factors, such as peak hour traveling time, accidents, weather

conditions, etc.) can result in route plans that can take the vehicles into congested urban

traffic conditions. Considering time-dependent travel times as well as information
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regarding demands that arise in real time in solving VRPs can reduce the costs of

ignoring the changing environment (Haghani & Jung, 2005).

1.2. Problem Statement
The problem considered in this research is the Real-Time Multi-Objective VRP. The

Real-Time Multi-Objective VRP is defined as a vehicle fleet that has to serve customers

of fixed demands from a central depot. Customers must be assigned to vehicles, and the

vehicles routed so that the a number of objectives are minimized/maximized (Malandraki

&  Daskin,  1992).  The  travel  time  between  two  customers  or  a  customer  and  the  depot

depends on the distance between the points and the time of day, and it also has stochastic

properties.

This research attempts to adjust the vehicles' routes at certain times in a planning period.

This adjustment considers new information about the travel times, current location of

vehicles, and new demand requests (that can be deleted after being served or added, since

they arise after the initial service began) and more. This results in a dynamic change in

the demand and traveling time information as time changes, which has to be taken into

consideration in order to provide optimized real-time operation of vehicles.

According to the literature review (presented later), we believe that the following

objectives should be addressed: (1) Minimizing the total traveling time (e.g.

(Malandraki & Daskin, 1992)) - Minimizing the total traveling time can reduce the cost

of an organization among other things, for the following reasons: (a) the less time a driver

spends driving the less chances there are for being involved in a car accident (b)

maintenance  has  to  be  performed  less  often.  (2) Minimizing the number of vehicles

(e.g., (Corberan, Fernandez, Laguna & Mart, 2002)) - Since in a real world, the fixed cost

of using additional vehicles is much more than the routing operations costs, we can

reduce the total cost by minimizing the number of vehicles in service. (3) Maximizing

customers' satisfaction (e.g.  (Sessomboon,  Watanabe,  Irohara  &  Yoshimoto,  1998))  -

Customers  who  are  not  satisfied  with  the  level  of  service  may  switch  to  a  different

provider, which results in a reduction of manufacturing and delivery. (4) Maximizing

drivers' satisfaction (e.g. (Lee & Ueng, 1998)) - In a similar manner, drivers who are not

satisfied with their work schedule may feel frustrated, which may affect their work,

which in turn may influence customers’ satisfaction. (5) Minimizing the arrival time of
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the last vehicle – each vehicle, on its return back to the depot, can be assigned to a new

route (meaning more routes with fewer vehicles). Minimizing the arrival time of the last

vehicle arriving at the depot, ensures that all other vehicles are present at the depot before

the arrival of the last vehicle, and therefore, can be assigned to new routes.

Besides the regular constraints of VRP, the following constraints should be satisfied as

well: (1) Time Dependency – since we are interested in minimizing traveling time, we

should  consider  that  in  the  real  world,  traveling  time is  dependent  on  both  the  distance

between  two  customers  and  the  time  of  day,  and  that  ignoring  the  fact  that  for  some

routes, the traveling time changes throughout the day, we may get solutions that are far

from optimal. (2) Soft time windows – soft time windows allow vehicles to arrive at the

demand point before or after the required service time; however, in such cases, a penalty

is incurred.

1.3. Research Objective and Scope

The major goals of this research are to formulate the real-time multi-objective vehicle

routing problem as described in section 1.2 and to find a proper solution algorithm for it.

In order to achieve this goal, the following objectives will be pursued:

Developing a model for the real-time multi-objective vehicle routing

problem stated in Section 1.2.

Study of various dynamic VRPs, and the methods used for solving them.

Study of various methods known in the literature for solving multi-objective

optimization problems.

Incorporating methods used for solving dynamic VRPs and multi-objective

optimization problems and developing an algorithm for the real-time multi-

objective vehicle routing problem. The main idea here is that this algorithm

must find a reasonable solution for the problem at hand within a reasonable

time, so that it can be used in a dynamic real-time situation.

Collecting real travel time information, and generating transportation

networks based on this information.

Apply  the  algorithm  on  the  generated  networks,  and  perform  a  sensitivity

analysis.
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1.4. Research Approach

The first step of this research is to formulate the problem described in section 1.2. This

formulation step is one of the most important parts of this research, because a good

formulation with fewer variables and constraints can reduce the calculation time for the

exact solution.

Next, based on knowledge gathered from work on dynamic VRPs and multi-objective

problems, a proper heuristic method for the real-time multi-objective VRP is developed.

As it is well known, vehicle routing problems are NP-hard, and therefore, an exact

solution cannot be found. Moreover, because of the real-time nature of the problem as

well as being a multi-objective problem, general heuristic methods may not be very

efficient.  The  soft  time  windows  constraint  and  the  penalty  from  the  time  windows

violations make this problem even more complicated. In this study, three evolutionary

algorithms (EAs) are proposed as the heuristic method for the problem formulated in this

research. In designing the algorithm two objectives were carefully considered, the

calculation time as well as the accuracy of the results. These two objectives are important

since in a real-time problem, decisions regarding vehicle control have to be made

efficiently and within a reasonable time.

The third step is algorithm calibration. In each of the algorithms presented, there are

several parameters that may affect the algorithm performance. In the third step, the

influences of these parameters are tested, and the best option is chosen.

The fourth step, involves model testing by comparing the results of three EAs. The

proposed EAs are applied on a network built using real-world data, with an attempt to

mimic  a  real-world  situation.  The  last  part  is  the  case  study  that  involves  a  whole  day

simulation where the network situation and the demand information change dynamically.

1.5. Organization of the Dissertation

The organization of this dissertation is as follows.

Chapter 1 introduces the background and the motivation for this research. It also

presents the problem statement and the research approach.

Chapter 2 discusses other research in vehicle routing problems. The review is focused

on the basic capacitated VRP, for which it reviews some exact methods such as branch-
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and-bound, set-covering and column generation, branch-and-cut and dynamic

programming. It also reviews some heuristics, such as the Saving algorithm, Sweep

algorithms and the Fisher and Jaikumar algorithm, as well as some meta-heuristics

algorithms, such as simulated annealing, Tabu search, genetic algorithms and more. Some

of  the  most  common  extensions  to  the  basic  VRP,  such  as  the  split  delivery  VRP  and

VRP with time windows are also reviewed. This chapter also provides an extended

review on multi-objective VRP and Real-Time VRP.

Chapter 3 presents the proposed formulation of the real-time multi-objective vehicle

routing problems as a mixed integer linear programming model.

Chapter 4 provides an overview of some of the common and most recent methods for

handling dynamic VRPs.

Chapter 5 provides an overview of some of the common and most recent methods for

solving multi-objective optimization problems.

Chapter 6 presents an overview of the evolutionary algorithms, including general

background and general structure of evolutionary algorithms. This chapter also presents

the proposed algorithms, which were developed especially to solve the problem presented

in Chapter 3. It describes the representations used to describe the problem accurately, the

algorithm methods for selection and replacement, and some other operators developed for

the purposes of this research.

Chapter 7 deals with issues regarding the fitness functions and convergence of the

algorithm.

Chapter 8 deals with the calibration of the wait-time parameter present in the

formulation presenter in chapter 3, and used by the algorithm presenter in chapter 6.

Chapter 9 describes some customers’ satisfaction functions based on information

supplied by logistics managers.

Chapter 10 describes the case study for the whole day simulation. It discusses the time

dependent shortest path algorithm that is developed based on Dijkstra's algorithm. It also

compares the whole day case study results from the five different strategies used.

Finally, Chapter 11 presents the summary, conclusions and recommendations for future

research.
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2. Theoretical Background
 The Vehicle-Routing Problem (VRP) is a common name for problems involving the

construction of a set  of routes for a fleet  of vehicles.  The vehicles start  their  routes at  a

depot, call at customers, to whom they deliver goods, and return to the depot. The

objective function for the vehicle-routing problem is to minimize delivery cost by finding

optimal routes, which are usually the shortest delivery routes (Boding, 1983). The basic

VRP consists of designing a set of delivery or collection routes, such that (1) each route

starts and ends at the depot, (2) each customer is called at exactly once and by only one

vehicle,  (3)  the  total  demand  on  each  route  does  not  exceed  the  capacity  of  a  single

vehicle, and (4) the total routing distance is minimized. It is common to address the basic

VRP as Capacitated Vehicle-Routing Problem (CVRP).

Since the VRP was first introduced formally by Dantzig and Ramser (1959), the

problem has been extensively discussed and a large number of algorithms, based on exact

methods, heuristics and meta-heuristics, have been developed for solving it. We start with

a formal definition, as a graph theoretic model, of the basic problems of the vehicle

routing class.

Let G=(V,E) be a complete graph, where V={0,…,n} is the vertex set and E is the edge

set. Each vertex i V\{0} represents a customer, having a non-negative demand di,

whereas vertex 0 corresponds to the depot. Each edge , : , ,e E i j i j V i j  is

associated with a nonnegative cost, Cij, which represents the travel cost spent to go from

vertex i to vertex j. Generally, the use of the loop edges, (i,i), is not allowed (this is

imposed by defining cii=+  for all i V). A fixed fleet of M identical vehicles, each of

capacity Q, is available at the depot. The VRP calls for the determination of a set of no

more than M routes whose total travel cost is minimized and such that: (1) each customer

is visited exactly once by one route;  (2) each route starts  and ends at  the depot,  (3) the

total demand of the customers served by a route does not exceed the vehicle capacity Q,

and (4) the length of each route does not exceed a preset limit L. (It is common to assume

constant speed so that distances, travel times and travel costs are considered as

synonymous.) A solution can be viewed as a set of M cycles sharing a common vertex at

the depot (Cordeau, Laporte, Savelsbergh & Vigo, 2005).
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If G is a directed graph, the cost matrix C is asymmetric, and the corresponding

problem is called asymmetric CVRP (ACVRP). Otherwise, we have cij=cji for all (i,j) E,

the problem is called symmetric CVRP (SCVRP). (Toth & Vigo, 2001b)

min ij ij
V Vi j

C x       (2.1)

subject to

1 \{0}ij
i V

x j V       (2.2)

\ {0}1ij
j V

i Vx       (2.3)

0
i

i
V

x N       (2.4)

0 j
j V

x N       (2.5)

0 ,\ij
i jS S

S V Sx r S       (2.6)

0,1 ,ij i j Vx       (2.7)

The in-degree and out-degree constraints (2.2) and (2.3) impose that exactly one edge

enters and leaves each vertex associated with a customer, respectively. Analogously,

constraints (2.4) and (2.5) impose the degree requirements for the depot vertex.

Constraint (2.6), capacity-cut constraints (CCCs), impose both the connectivity of the

solution and the vehicle capacity requirements. In fact, they stipulate that each cut (V\S,S)

defined by a customer set S is crossed by a number of edges not smaller than r(S)

(minimum number of vehicles needed to serve set S).  The  value  of r(S)  may  be

determined by solving an associated Bin Packing Problem (BPP - the bin packing

problem is a combinatorial NP-hard problem, in which objects of different volumes must

be packed into a finite number of bins of capacity Q in a way that minimizes the number

of bins used) with an item set S and bins of capacity Q.

This model can be easily adapted to the symmetric problem. To this end, it should be

noted that in SCVRP the routes are not oriented (i.e., the customers along a route may be

visited indifferently clockwise or counterclockwise). Therefore, it is not necessary to

know in which direction edges are traversed by the vehicles, and for each undirected edge
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(i,j) E, i,j 0, only one of the two variables xij and xji must be used, for example, that with

i<j. Note that when single-customer routes are not allowed, the edges incident to the

depot can be traversed at most once. When, instead, a single-customer route is allowed

for customer j, one may either include in the model both binary variables x0j and xj0 or use

a single integer variable, which may take value {0,1,2}. In this latter case, if x0j=2, then a

route including the single customer j is selected in the solution. In the following models

we assume that single-customer routes are allowed. The symmetric version of model

VRP1 then reads

\

min ij ij
i jV in

C x       (2.8)

subject to

2 0hi ij
h i j i

x x i V       (2.9)

\
0

0

2j
j V

x k     (2.10)

,2 \ 0hi ij
i j i i j i

j
S

h
S

S S

S Vx x r S S     (2.11)

0,1 , \ 0 ,ij i j V i jx     (2.12)

0 0,1, \2 0j j Vx     (2.13)

The degree constraints (2.9) and (2.10) impose that exactly two edges are incident into

each vertex associated with a customer and that 2K edges are incident into the depot

vertex, respectively. The CCCs (2.11) impose both the connectivity of the solution and

the vehicle capacity requirements by forcing that a sufficient number of edges enter each

subset of vertices. Constraints (2.10)-(2.12) may be adapted to SCVRP in a similar way.

2.1. Exact Methods for CVRP

2.1.1. Branch-and-bound algorithms

Branch-and-bound is a general algorithm for finding optimal solutions of various

optimization problems, especially in discrete and combinatorial optimization. It consists

of a systematic enumeration of all candidate solutions, where large subsets of fruitless
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candidates are discarded, by using upper and lower estimated bounds of the quantity

being optimized.

The branch-and-bound method has been used extensively in recent decades to solve the

CVRP and its main variants. In many cases, these algorithms still represent the state of

the art with respect to the exact solution methods. In their extensive survey of exact

methods, Laporte and Nobert (1987) provide a complete and detailed analysis of the

branch-and-bound algorithms proposed until the late 1980s. Recently, more sophisticated

bounds have been developed, mainly those based on Lagrangean relaxations or on the

additive bounding procedure, which have substantially increased the size of the problems

that can be solved to optimality.

Many different elementary combinatorial relaxations were used in early branch-and-

bound algorithms. A first family of relaxations is obtained from the integer programming

formulations of these problems by dropping the connectivity and capacity constraints.

The first branch-and-cut algorithm, proposed by Laporte, Mercure and Nobert (1986),

which used this relaxation, was developed for solving asymmetrical CVRP (ACVRP). In

the asymmetric case, the relaxed problem is the well-known transportation problem,

calling for a min-cost collection of circuits of G visiting once all the vehicles in V\{0},

and K times  vertex  0,  which  may  be  transformed  into  an  assignment  problem  (AP)  by

introducing copies of the depot. The counterpart, for the symmetric case, is the so-called

b-matching relaxation, which requires the determination of a min-cost collection of

cycles covering all the vertices and such that the degree of each vertex i is  equal  to bi,

where bi=2 for all the customer vertices, and b0=2K for the depot vertex. This relaxation

was used by Miller (1995), after the development of efficient algorithms for the b-

matching problem (see e.g.,(Miller & Pekny, 1995)). The relaxed problems may then be

solved in polynomial time (see e.g., (Miller & Pekny, 1995) and (Dell'Amico & Toth,

2000)).

The second family of relaxations is based on degree-constrained spanning trees. These

relaxations extend the well known k-tree relaxation proposed by Held and Karp (1971)

for the TSP. The earliest branch-and-bound algorithm based on this relaxation, proposed

by Christofides, Mingozzi and Toth (1981a), can only solve relatively small instances.

More recently, Fisher (1994) presented another tree- based relaxation requiring the

determination of a k-tree, defined as a minimum cost set of n+k edges spanning the graph.
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The approach used by Fisher is based on formulation VRP3 (Toth & Vigo, 2001a) with

the additional assumption that single-customer routes are not allowed. This is imposed by

defining as binary all the variables associated with edges incident into the depot.

However, as Fisher observed, in many cases this assumption is not constraining. Fisher

modeled the SCVRP as the problem of determining a k-tree with degree equal to 2k at the

depot vertex, and with additional constraints imposing the vehicle capacity requirements

and the degree of each customer vertex, which must be equal to 2.

The previously described basic combinatorial relaxations, for both ACVRP and

SCVRP, are of poor quality, and, when used within branch-and-bound approaches, they

only allow for the optimal solution of small instances. Therefore, different improved

bounding techniques were proposed, which considerably increased the size of the

instances solvable by branch-and-bound algorithms.

Two relaxations were introduced by Fischetti, Toth and Vigo (1994), who embedded

them into overall additive bounding procedures. The additive approach proposed by

Fischetti and Toth (1989) allows for the combination of different lower bounding

procedures, each exploiting different substructures of the problem under consideration.

The first relaxation is based on a disjunction on infeasible arc subsets, and the second

lower bound is a projective bound based on a min-cost flow relaxation of ACVRP. The

resulting branch-and-bound approach is able to solve randomly generated instances

containing up to 300 vertices and four vehicles. Fisher (1994) proposed a way of

extending to the asymmetric CVRP the Lagrangean bound based on m-trees. No

computational testing for this bound was presented by Fisher.

Hadjiconstantinou, Christofides and Mingozzi (1995a) proposed a branch-and-bound

algorithm where the lower bound is computed by heuristically solving the dual of the

linear programming relaxation of the Set-Partitioning (SP) formulation of the SCVRP.

Almoustafa, Hanafi and Mladenovic (2011) suggested a new Branch and Bound

algorithm for solving ADVRP. In this algorithm, the lower bounds are obtained by

relaxation of sub-tour elimination and maximum distance constraints. Thus the

Assignment problem (AP) is solved in each node of the B&B tree. A best-first-search

strategy and adapted tolerance based rules are used for branching. That is, the next node

in the tree is one with the smallest relaxed objective function value. In case of a tie, two

tie-breaking rules are used: (1) the last one in the list; (2) the random one among them.
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Computational results show that the algorithm can provide exact solutions for instances

with up to 1000 nodes.

2.1.2. Set-Covering and Column Generation Algorithms

A classical method, first suggested by Balinski and Quandt (1964), for solving the

CVRP is based on formulating the problem as a set-covering problem. The idea is as

follows: Enumerate all feasible routes, where a feasible route is one that starts and ends at

the depot and picks up a total load not exceeding Q. Let the index set of all feasible routes

be 1, 2,..., R . Let rc  be  the  cost  (e.g.,  length)  of  route r, and let rS V  denote

those customers appearing in route r for all r . ir  is defined as 1, if customer i is

served in route r, and 0 otherwise, for each customer i V  and each route r . Also,

for every r , let 1ry  if route r is in the optimal solution and 0 otherwise.

In the set-covering formulation of the CVRP, the objective is to select a minimum-cost

set of feasible routes such that each customer is included in some route. It is

min r r
r

P c y     (2.14)

subject to

1
r

ir ry i V     (2.15)

r
r

y K     (2.16)

0,1r ry     (2.17)

Constraint (2.15) requires that each customer appear in at least one route, while

constraint  (2.16) imposes that  at  most K routes be used. Constraints (2.15) is  written as

inequality constraints instead of equality constraints. The formulation with equality

constraints is equivalent, since it is assumed that the distance matrix ijt  satisfies  the

triangle inequality, and therefore each customer will be visited exactly once in the
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optimal solution. The formulation with inequality constraints is used here since it turns

out to be easier to work with for implementation.

This mathematical programming formulation was used successfully by Cullen, Jarvis

and Ratliff (1981) to design heuristic methods for the VRP. Exact algorithms based on

this method were developed by Agarwal, Mathur and Salkin (1989) and later by Bixby

and Adviser-Coullard (1999) and Hadjiconstantinou, Christofides and Mingozzi (1995b).

Column generation is an efficient algorithm for solving larger linear programs. The

overarching idea is that many linear programs are too large to consider all the variables

explicitly. Since most of the variables will be non-basic and assume a value of zero in the

optimal solution, only a subset of variables need to be considered in theory when solving

the problem. Column generation leverages this idea to generate only the variables which

have  the  potential  to  improve  the  objective  function  -  that  is,  to  find  variables  with

negative reduced cost (assuming without loss of generality that the problem is a

minimization problem).

The problem being solved is split into two problems: the master problem and the

subproblem. The master problem is the original problem with only a subset of variables

being considered. The subproblem is a new problem created to identify a new variable.

The objective function of the subproblem is the reduced cost of the new variable with

respect to the current dual variables, and the constraints require that the variable obey the

naturally occurring constraints.

The process works as follows. The master problem is solved - from this solution, we are

able to obtain dual prices for each of the constraints in the master problem. This

information is then utilized in the objective function of the subproblem. The subproblem

is solved. If the objective value of the subproblem is negative, a variable with negative

reduced cost has been identified. This variable is then added to the master problem, and

the master problem is re-solved. Re-solving the master problem will generate a new set of

dual values, and the process is repeated until no negative reduced cost variables are

identified. If the subproblem returns a solution with non-negative reduced cost, we can

conclude that the solution to the master problem is optimal.

To solve the linear programming relaxation of problem P, described earlier, without

enumerating all the routes, column generation technique can be used. A detailed

explanation of this method is given below, but the general idea is as follows: A portion of
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all  possible  routes  is  enumerated,  and  the  linear  relaxation  with  this  partial  route  set  is

solved. The solution to this linear program is then used to determine if there are any

routes not included in the formulation that can further reduce the objective function

value. This is the column generation step. Using the values of the optimal dual variables

(with respect to the partial route set), we solve a simpler optimization problem where we

identify if there is a route that should be included in the formulation. Then the linear

relaxation of this expanded problem is resolved. This is continued until no additional

routes are found that can reduce the objective function value. In that case, we can show

that an optimal solution to the linear program is found, one that is optimal for the

complete route set.

Specifically, we first enumerate a partial set of routes '  and formulate the

corresponding linear relaxation of the set-covering problem with respect to this set:

'

' min r r
r

P c y     (2.18)

subject to

'

1
r

ir ry i V     (2.19)

'
r

r
Ky     (2.20)

0 'r ry     (2.21)

Let y  be  the  optimal  solution  to  problem P', and let 1 2, ,..., n  be  the

corresponding optimal dual variables associated with constraints (2.19). Let  be the

optimal dual variable associate with constraint (2.20). We would like to know whether y

(or, equivalently, , ) is optimal for the linear relaxation of problem P (respectively,

the dual of the linear relaxation of problem P). To answer this question, observe that the

dual of the linear relaxation of problem P is
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max iD
i V

P K     (2.22)

subject to

, , 0, 0ir i r i
i V

c r i V     (2.23)

Clearly, if ,  satisfies constraint (2.23), then it is optimal for problem PD and

therefore y  is optimal for the linear programming relaxation of problem P. The vector

,  is not feasible in problem PD if there exists a single constraint, r, such that

ir i r
i V

c     (2.24)

Consequently, if there exists a column r that minimizes the quantity r
i

ir i
V

c  and

this quantity is less than , then a violated constraint is found. In that case the current

vector ,  is not optimal for problem PD. The corresponding column just found can be

added to the formulation of problem P, which is solved again. The process repeats itself

until no violated constraint (negative reduced cost column) is found; in this case the

optimal solution to the linear relaxation of problem P (the vector y )  and  the  optimal

solution to problem PD (the vector , ) is found.

The column-generation problem is to identify a feasible route r  that satisfies (2.24)

. Define rc  to be the reduced cost of column r, i.e.,
r

ir
S

r
i

c c  for each r .

Also define i
i S

d s d  for any S V . The task is then to solve the column generation

problem, which is

min :r rCG c d S C     (2.25)
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It is not clear how this column-generation problem, CG, should be solved. Problem CG

is itself NP-hard since, even given rS , evaluating rc  (or rc ) requires solving the

Traveling Salesman Problem (TSP) with respect to vertex set 0rS .

In summary, the column-generation algorithm for solving the linear relaxation of

problem P can be described as follows:

1. Generate an initial set of columns ' .

2. Solve problem P' and get optimal primal variables, y , and optimal dual variables,

, .

3. Solve problem CG, or identify routes r  satisfying 0rc .

4. For every r  with 0rc  add the column r to  and go to 2.

5. If no routes r have 0rc , i.e., min 0c , then stop.

The procedure produces a vector y  which is the optimal solution to the linear relaxation

of problem P. The objective function value
'

r r
r

c y  is then a lower bound on the optimal

solution value to the CVRP, i.e., the optimal integer solution value to P.

The column generation step (step 3) usually turns out to be the most time consuming.

To reduce the computation time of this step, the following additional features can be

implemented. First, it is important to generate a good set of initial routes in step 1. To do

this, a large number of quick heuristics for the CVRP can be used. In fact, if a good dual

solution is available, then it can be used to help generate routes with low reduced cost

(with respect to this dual solution). Several methods for estimating good dual variables

were given by Agarwal et al. (1989) and Hadjiconstantinou et al. (1995b). It is also

important that in each iteration of step 3 a number of routes with negative reduced cost be

generated, not just one. In addition, it is particularly helpful to generate sets of new

columns that are disjoint (as in an integer solution).
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2.1.3. Branch-and-cut algorithms

Branch-and-cut is a method of combinatorial optimization for solving integer linear

programming problems, where some or all the unknowns are restricted to integer values.

The method is a hybrid of branch and bound and cutting plane methods.

Branch-and-cut has been very successful in solving many combinatorial optimization

problems (see (Caprara & Fischetti, 1997)); however, there are situations in which it may

perform poorly. This unpleasant situation happens, for example, when (1) we do not have

a  good  algorithm  with  which  to  perform  the  cutting  plane  phase,  (2)  the  number  of

iterations of the cutting plane phase is too high, (3) the linear program becomes

unsolvable because of its size, or (4) the tree generated by the branching procedure

becomes too large and termination seems unlikely within a reasonable amount of time.

Nevertheless, branch-and-cut algorithms currently constitute the best available exact

approach for the solution of the CVRP. However, the amount of research effort spent to

solve CVRP by this method is not comparable with what has been dedicated to the TSP,

and is still quite limited and most of it is not yet published.

The use of branch-and-cut for the CVRP is rooted in the exact algorithm of Laporte,

Nobert and Desrochers (1985). Augerat et al. (1995) developed the first complete branch-

and-cut approach for the CVRP. They described several heuristic separation procedures

for the classes of valid inequalities proposed by Cornuejols and Harche (1993), as well as

four new classes of valid in-equalities. Separation procedures were further investigated

by both Augerat (1995) and Augerat, Belenguer, Benavent, Corberan and Naddef (1998).

 Augerat et al. (1998) presented a computational study that uses a branch-and-cut

algorithm that makes use of many of the separation procedures and strategies. The

algorithm, developed by three groups of researchers, was not done with the purpose of

being efficiently implemented. Rather than state-of-the-art software, the code is a kind of

experimental environment that can easily accommodate various separation routines and

algorithmic strategies, with the purpose of making comparison testing readily available.

The main drawback of such a code is the lack of several components that are common

to most branch-and-cut codes, like, among others, pool management and the possibility of

having only subsets of variables active in the solution of the linear programs. In addition,

the visit of the enumeration tree is done using the depth-first, which is the easiest to
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implement but also the least effective. Last but not least, the algorithm was implemented

via independent pieces of code communicating through files written in the mass storage.

Such an algorithmic design provided some flexibility to the developers but has, of course,

a price in terms of efficiency.

Due to these facts, the computational results and the performance indicators reported by

Augerat  (1995)  are  not  to  be  taken  as  reliable  evidence  of  the  actual  potential  of  the

technique. Nevertheless, it is the first algorithm which found an optimal solution (and

proved its optimality) for two instances of 135 nodes proposed by Fisher (1994). To the

best of our knowledge, these are still the largest instances for which a certified optimal

solution has been computed.

Lysgaard, Letchford and Eglese (2004) developed new separation procedures for most

of the families of valid inequalities proposed so far. Their overall branch-and-cut

approach is able to solve within moderate computing times previously solved instances

and three new medium size ones.

In  a  further  computational  study,  Ralphs  T.  K.  ,  Kopman,  Pulleyblank  and  Trotter

(2003) (see also (Ralphs T. K., 1995) and (Kopman, 1999)) have presented a parallel

branch-and-cut algorithm for the CVRP in which an exact separation of valid m-TSP

inequalities is used in addition to heuristic separation of capacity inequalities. Such an

algorithm is able to find optimal solutions (and prove their  optimality) and improve the

best known solutions for some of the test problems.

Another, more recent, study was reported by Blasum and Hochstattler (2000), who

developed an algorithm using the same branching strategy and separation procedures as

in Augerat (1995) with some modifications. For example, they developed a heuristic

procedure for separating the rounded capacity inequalities based on their algorithm for

the separation of the multi-star inequalities. However, they used the state-of-the-art

branch-and-cut framework ABACUS, developed by Junger and Thienel (1998). It is

remarkable, however, that the algorithm can solve two difficult 76-node problems to

optimality with computing times considerably shorter than previous algorithms.

Fukasawa et al. (2006) proposed a successful branch-and-cut-and-price algorithm

combining branch-and-cut with the q-routes relaxation of Christofides et al. (1981a). This

method produces tighter bounds than other branch-and-cut algorithms and is capable of

solving several previously unsolved instances with up to 75 customers. Baldacci, Bodin
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and Mingozzi (2006) have used their set partitioning algorithm to solve difficult CVRP

instances. Their approach yields bounds whose quality is comparable to those of

Fukasawa et al. (2006), but seems much quicker.

Other branch-and-cut algorithms are described in Achuthan, Caccetta and Hill (1996),

Achuthan, Caccetta and Hill (2003) and Blasum and Hochstattler (2000). The polyhedral

structure  of  the  special  case  of  CVRP,  where  all  the  customers  have  a  unit  demand,  is

described in Campos, Corberan and Mota (1991) and by Araque, Hall and Magnanti

(1990). Branch-and-cut algorithms for this problem are presented by Araque G, Kudva,

Morin and Pekny (1994) and by Ghiani, Laporte and Semet (2006).

2.1.4. Dynamic Programming

Dynamic programming (Bellman, 1954; Bertsekas, Bertsekas, Bertsekas & Bertsekas,

1995; Dreyfus & Law, 1977) was first proposed for VRPs by Eilon, Watson-Gandy and

Christofides (1971). Consider a VRP with a fixed number m of vehicles. Let c S  denote

the  cost  (length)  of  a  vehicle  route  through  vertex  1  and  all  vertices  of  a  subset S of

1\V . Let kf U  be the minimum cost achievable using k vehicles and delivering to a

subset U of 1\V . Then the minimum cost can be determined through the following

recursion:

*

* *
1

\ 1

1

min \ U 1k
kU U V

c U k
f k f U c U k     (2.26)

The  solution  cost  is  equal  to \ 1mf V  and the optimal solution corresponds to the

optimization subsets *U  in (2.26).

It is apparent that if kf U  has to be computed for all k and for all subsets U of 1\V ,

the number of computations required is likely to be excessive in most problems. Efficient

use of dynamic programming requires a substantial reduction of the number of states by

means of a relaxation procedure, or by using feasibility or dominance criteria.

Christofides, Mingozzi and Toth (1981b) introduced a state-space relaxation, which is

an efficient way of reducing the number of states. It provides a longer bound on the cost
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of the optimal solution. The optimum can then be reached by embedding the bounding

procedure in an enumerative scheme. The method can be summarized as follows:

Consider the general dynamic programming recursion

10, 0, 1min 0, ,
k ji i if f k c k j     (2.27)

where 0, 0,if j  is the least cost of going from state 0 at stage 0 to state j at stage i,

1 j  is  the  set  of  all  possible  states  from  which  state j can be reached directly, and

,ic k j  is the cost of going from state k at stage i-1 to state j at stage i. Let g  be a

mapping from state space S associated with (2.27) to a state space T of  smaller

cardinality, and let 1F g i  be a set satisfying

1 1g g F g jk k .     (2.28)

Recursion (2.27) then becomes

10, 0, 10 , min 0 , ,iF g it jif g g j f c tg t g j     (2.29)

where

, min , : ,i ic t g j c k l g k t g j g l .     (2.30)

It results that

00, ,0 , 0,iif g g i f i .     (2.31)

This relaxation is useful only if (1) 1F  can easily be determined, this will  be so if

g  is separable,  so that  given g U  and r, \g U r  can be computed; (2) g  is
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such that the optimization of (2.30) is over a small domain or that a good lower bound on

,ic t g j  can be computed.

Christofides et al. (1981b) used the following relaxation for CVRPs. Let ,kf U r  be

the least cost of supplying a set U of vertices, using k vehicles, where the last vehicle of

the k corresponding routes belong to 2,..., r  ( k r n ). Let ,c U r  be the cost of the

TSP solution through 1U , where the last vertex before the depot is r. The recursion

is then

*

* *
1min , 1 , min \ U , 1 , , 1

,
, 1

U Uk k
k

f U r f U r c U r k r
f U r

c U r k
    (2.32)

subject to

\ 1

1,...,i
V i U

i
i

d m k D d kD k m .     (2.33)

For this problem, is given by

U
i

i
g U d     (2.34)

Recursion (2.29) then becomes

1, min , 1 , min , 1 ,k k kp
f g U r f g U r f c pg U rp r     (2.35)

subject to

1 min ,pg V m g DD U     (2.36)

Using this and other relaxations, lower bounds on optimal VRP solutions were obtained

for problems with up to 25 vertices. The ration "lower bound / optimum" varied between
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93.1% and 100%. In a later study, Christofides (1985) reported that CVRPs with up to 50

vertices can be solved systematically with this approach.

2.2. Heuristic Methods
An impressive number of heuristics have been proposed for the VRP. In this chapter,

there is a description of the most important heuristic methods.

2.2.1. The Savings Algorithm

The Savings heuristic, proposed by Clarke and Wright (1964), is based on the concept

of saving. If i is the last customer of a route and j is the first customer of another route,

the associated saving is defined as Sij=Ci0+C0j Cij. An initial solution is defined as a set

of routes, each of which starts at the depot, visits one customer and returns to the depot.

An iterative process merges all routes that can be feasibly merged into a single route,

when in each step the two routes with the highest non negative value of savings are

merged.

This algorithm naturally applies to problems for which the number of vehicles is a

decision variable, and it works equally well for directed or undirected problems.

However, according to Vigo (1996) the behavior of the method worsens considerably in

the directed case, although the number of potential route merges is then halved.

One drawback of the original Savings algorithm is that it tends to produce good routes

at the beginning but less interesting routes toward the end, including some

circumferential routes. To remedy this, Gaskell (1967) and Yellow (1970) proposed

generalized savings of the form Sij=Ci0+C0i Cij where  is a route shape parameter. The

larger the , the more emphasis is put on the distance between the vertices to be

connected. Golden, Magnanti and Nguyen (1977) reported that using =0.4 or 1.0 yields

good solutions, taking into account the number of routes and the total length of the

solution.

2.2.2. The Sweep Algorithm

The sweep algorithm, proposed by Gillett and Miller (1974), is a two-phase process

applied to planar VRP instances. Assume each vertex i is represented by its polar

coordinates ( i,li), where i is the angle and li is the ray length. The algorithm starts with
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an arbitrary customer and then sequentially assigns the remaining customers to the

current vehicle by considering them in order of increasing polar angle with respect to the

depot and the initial customer. As soon as the current customer cannot be feasibly

assigned to the current vehicle, a new route is initialized with it. Once all customers are

assigned to vehicles, each route is separately defined by solving a TSP.

Some implementations include a post-optimization phase in which vertices are

exchanged between adjacent clusters, and routes are re-optimized. To our knowledge, the

first mentions of this type of method are found in a book by Wren (1971) and in a paper

by Wren and Holliday (1972).

2.2.3. The Fisher and Jaikumar algorithm

The Fisher and Jaikumar (1981) algorithm, as the Swap algorithm, is a two-phase

process in which feasible clusters of customers are first created by solving a generalized

assignment  problem  (GAP).  The  GAP  is  solved  either  optimally  or  heuristically.  The

final routes are determined by solving a TSP on each cluster.

To formulate the GAP, it is first necessary to determine a seed for each route from

which customer distances are computed. Since the GAP is NP-hard, it is usually solved

by means of a Lagrangian relaxation technique. Fisher and Jaikumar (1981) provided

integer solutions values without providing the rounding or truncating rule. Their solutions

cannot be verified, which makes the assessment of the algorithm difficult.

Bramel  and  Simchi-Levi  (1995)  optimized  the  choice  of  seeds  in  the  Fisher  and

Jaikumar algorithm by solving a capacitated location problem. Their results on the seven

CMT instances containing only capacity constraints show a significant average deviation

(3.29%) from the best known results.

2.3. Meta-heuristics Algorithms

Several meta-heuristics have been applied to the VRP. With respect to classical

heuristics, they perform a more thorough search of the solution space and are less likely

to end with a local optimum. These can be broadly divided into three classes: (1) local

search, including simulated annealing, deterministic annealing, and tabu search; (2)

population search, including genetic algorithm and adaptive memory procedures; (3)

learning mechanisms, including neural networks and ant colony optimization. The best
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heuristics often combine ideas borrowed from different meta-heuristic principles. Recent

surveys of VRP meta-heuristics can be found in (Gendreau, Laporte & Potvin, 2001),

(Cordeau & Laporte, 2004), and (Cordeau, Gendreau, Hertz, Laporte & Sormany, 2005).

2.3.1. Simulated Annealing

Simulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983) is a generic probabilistic

meta-heuristic for a global optimization problem of applied mathematics, namely locating

a good approximation to global minimum (or maximum) of a given function in a large

search space.

A simulated annealing algorithm consists of a discrete-time inhomogeneous Markov

chain x(t), whose evolution is the following:. At t=0, a random feasible solution is

chosen. Let x(t)=i, choose a neighbor j of i at  random.  Once j is chosen, the next state

x(t+1) is determined as follow: (1) if C(j C(i) then x(t+1)=j, (2) if C(j)>C(i) then

x(t+1)=j with probability exp[-(C(j)-C(i))/T(t)], otherwise x(t+1)=i,  where  C  is  a  cost

function and T is a non increasing function (Bertsimas Dimitris & Tsitsiklis, 1993).

A limited number of simulated annealing heuristics for the CVRP were proposed in the

early 1990s. Two early implementations are those of Robuste, Daganzo and Souleyrette

(1990), and Alfa, Heragu and Chen (1991). Robuste et al. (1990) tested their algorithm on

four instances (n=80, 100, 120, 500), but no comparisons with alternative methods are

available. The algorithm proposed by Alfa et al. (1991) was applied to three instances

(n=30, 50, 75) and did not produce competitive results.

Osman’s implementation (Osman, 1993) is the most involved and also the most

successful. This algorithm succeeded in producing good solutions, but was not

competitive with the best tabu search implementations available at the same period.

2.3.2. Tabu Search

The roots of tabu search go back to the 1970’s. However, it was first presented in its

current form by Glover (1986) and by Hansen M. P. (1986).

The first step (k=0, where k is the iteration counter) of tabu search is choosing a feasible

solution, i. Let i* denote the best solution found so far, at k=0, i* is  equal  to i. The

following iterative procedure is carried out: At each iteration a subset V* of solution in

N(i,k) is generated, where N(i,k) denotes the neighborhood of solution i,  in which some
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recently visited solutions are removed (the tabu list). Then, i is assigned with the best

solution found in V*, with respect to a cost function C. If C(i)>C(i*) (for maximization

problems), i* is set to i. The tabu list is updated with the new solution. The iterative

process is repeated until a stopping condition is met.

A large number of tabu search algorithms have been produced over the past twenty

years. The first known implementation is of Willard (1989), but it was soon superseded

by more powerful algorithms, including those of Osman (1993), Taillard E. (1993), and

Gendreau, Hertz and Laporte (1994). To this day, Taillard’s algorithm remains one of the

most successful tabu search implementations for the CVRP.

Deterministic annealing was first applied to the VRP by Golden, Wasil, Kelly and Chao

(1998) and more recently by Li F., Golden and Wasil (2005).

A limited number of heuristics based on learning mechanisms have been proposed for

the VRP. None of the known neural networks based methods is satisfactory, and the early

ant colony based heuristics could not compete with the best available approaches.

However, recently Reimann, Doerner and Hartl (2004) have proposed a well-performing

heuristics called D-ants.

2.3.3. Genetic Algorithms

A genetic algorithm (GA) is a randomized global search technique used in computing to

find exact or approximate solutions to optimization and search problems by imitating

processes observed during natural evolution, such as mutations and crossover. GAs are

categorized as global search heuristics, and are a particular class of evolutionary

algorithms (EA) that use techniques inspired by evolutionary biology such as inheritance,

mutation, selection, and crossover. GAs were first introduced by Holland (1975).

Basically, a GA evolves a population, also known as chromosomes, where each

chromosome encodes a solution to a particular instance. This evolution takes place

through the application of operators that mimic natural phenomena observed in nature

(e.g., reproduction, mutation). For more information about GAs refer to (Mitchell, 1996).

Homberger and Gehring (1999) described two GAs for the VRPTW. Starting from a

population with  individuals, subsets of individuals are randomly selected and

recombined to yield a total of  offspring. Each offspring is then subjected to a

mutation operator, and the  fittest are selected to form the new population. In the first
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algorithm, new individuals are generated directly through mutations and no

recombination takes place. In the second algorithm, offspring are generated through a

two-step recombination procedure in which three individuals are involved. In both

algorithms, the fitness of an individual depends first on the number of vehicles used and

second on the total distance traveled.

In a later work, Gehring and Homberger (2002) proposed a two-phase meta-heuristic in

which the first phase uses GA to minimize the number of vehicles, while the second one

minimizes the total distance through tabu search.

Berger and Barkaoui (2003) developed a GA that concurrently evolves two distinct

populations pursuing different objectives under partial constraint relaxation. The first

population aims to minimize the total distance traveled while the second one focuses on

minimizing  the  violations  of  the  time  window  constraints.  The  maximum  number  of

vehicles imposed in the first population is equal to kmin whereas the second population is

allowed only kmin 1 vehicles, where kmin refers to the number of routes in the best known

feasible solution. Whenever a new feasible solution emerges from the second population,

the first population is replaced with the second and the value of kmin is updated

accordingly. Two recombination operators and five mutation operators are used to evolve

the populations. This approach has proved to be rather efficient in minimizing the number

of vehicles used.

More recently, Mester and Bräysy (2005) developed an iterative meta-heuristic that

combines guided local search and evolution strategies. An initial solution is first created

by an insertion heuristic. This solution is then improved by the application of a two-stage

procedure. The first stage consists of a guided local search procedure in which 2-opt* and

Or-opt exchanges are performed together with 1-interchanges. This local search is guided

by penalizing long arcs appearing often in local minima. The second stage iteratively

removes a selected set of customers from the current solution and reinserts the removed

customers at minimum cost. These two stages are themselves repeated iteratively until no

further improvement can be obtained. Very good results are reported by the authors on

large-scale instances. According to Bräysy and Gendreau (2005b), the three approaches

just described seem to produce the best results among genetic algorithms. Other such
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algorithms have also been proposed by a number of researchers including Potvin and

Bengio (1996), Thangiah and Petrovic (1998) and Tan K., Lee, Zhu and Ou (2001).

Wilck and Cavalier (2012) developed two hybrid genetic algorithms, each with a

different fitness approach, for the SDVRP for which they provided computational results

for thirty-two data sets from previous literature. Of the two fitness approaches, the second

fitness approach, ration of demand unit vs. distance unit, performed better than the first

fitness approach, shortest route, for most of the 32 data sets in terms of solution quality.

Neither fitness approach was better than the other in solution time.

Shen Y. and Murata (2012) presented a genetic algorithm (GA) for the basic vehicle

routing problem with two-dimensional loading constraints, which is a combination of the

Bin  Packing  Problem  and  the  Vehicle  Routing  Problem  (2L-CVRP).  In  the  field  of

combinatorial optimization, loading and routing problems have been studied intensively

but separately. 2L-CVRP is a generalization of the Capacitated Vehicle Routing Problem,

in which customer demand is formed by a set of rectangular, weighted items.

A GA developed for solving the problem performs well, although it does not equal the

mathematic model that ran by MIP in terms of solution quality, but it only takes 8.92%

on average of the computing time. By changing the Two-point crossover to a One-point

crossover, the algorithm was able to get an acceptable result that can accurately calculate

the vehicle numbers up to 75 customers, while consuming only 4.31% cost on average

and greatly reducing the computing time (8.23%).

2.3.4. Ant Systems Algorithms

Ant systems (AS) is a probabilistic technique for solving optimization problems, which

can be reduced to finding good paths through graphs. AS methods are inspired by an

analogy with real ant colonies foraging for food. In their search for food, ants mark the

paths they travel by leaving an aromatic essence called pheromone. The quantity of

pheromone left  on a path depends on the length of the path and the quality of the food

source. This pheromone provides information to other ants that are attracted to it. With

time, paths leading to the more interesting food sources, i.e., those close to the nest and

with large quantities of food become more frequented and are marked with larger

amounts of pheromone. Overall, this process leads to an efficient procedure for procuring

food by ant colonies.
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This observation led Colorni, Dorigo and Maniezzo (1991) to propose a new class of

meta-heuristics for solving combinatorial problems based on the following

correspondences: Artificial ants searching the solution space simulate real ants exploring

their environment, objective function values are associated with the quality of food

sources, and values recorded in an adaptive memory mimic the pheromone trails.

The number of papers with an application of AS to the VRP is very limited. Kawamura,

Yamamoto, Mitamura, Suzuki and Ohuchi (1998) proposed a complex hybrid variant of

AS that involves 2-opt improvement procedures and probabilistic acceptance rules

reminiscent of simulated annealing. The method was applied to two geometric instances

of 30 and 60 customers, and it identified the optimal solution in both cases.

 Bullnheimer, Hartl and Strauss (1997) developed a hybrid AS in which each vehicle

route produced in a given iteration is improved by the 2-opt heuristic before the trail

update. This algorithm also uses terms related to vehicle capacity and distance savings

with respect to the depot when selecting the next vertex to be visited. In the trail update

step, they use a number of "elitist ants" to account for the best solution found so far (these

ants are assumed to always travel on this best solution). Their computational experiments

on the 14 problems of Christofides, Mingozzi and Toth (1979) indicate that the addition

of a 2-opt step and the use of elitist ants are clearly beneficial. The best results obtained

over 30 distinct runs range from 0 to 14.09% above the best known solutions to the

problems with an average error of 4.43%.

In a later paper (Bullnheimer, Hartl & Strauss, 1999), the authors refined their algorithm

in several ways: (1) the capacity term previously used in the vertex selection rule, which

was quite expensive to compute, is dropped, and the saving term is incorporated directly

in the visibility term in a parametric fashion, (2) Only the 4
n  nearest neighbors of any

vertex are considered when choosing the next customer to visit, (3) Only the five best

solutions found in each iteration are used for trail update, and the pheromone quantity

laid is further weighted according to the solution's rank. These various changes have led

to shorter run times and improved solutions. The computational results obtained on the 14

benchmark problems are quite good with an average error of only 1.51% above the best

known solutions and CPU times that are very reasonable.
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Montemanni, Gambardella, Rizzoli and Donati (2003) studied a dynamic vehicle

routing problem, and proposed an Ant Colony System based algorithm for solving it. The

algorithm proposed is based on three main elements: (1) Event manager, which collects

new orders and keeps track of the already served orders and of the current position of

each vehicle. (2) Ant Colony System (ACS) algorithm. The information collected by the

event manager is used to construct a sequence of static VRP-like instances, which are

solved heuristically by the an ACS algorithm. (3) Pheromone conservation procedure,

which is strictly connected with the ACS algorithm, and is used to pass information about

characteristics of good solutions from a static VRP to the following one.

 The method has been tested on a set of benchmarks defined starting from a set of

widely  available  problems.  Computational  results  confirm  the  effectiveness and the

efficiency of the strategy proposed.

Yu, Yang and Yao (2009) proposed an improved ant colony optimization (IACO),

which possesses a new strategy to update the increased pheromone, called ant-weight

strategy, and a mutation operation; the mutation operator is designed to conduct customer

exchanges in a random fashion, to solve VRP. The computational results of 14

benchmark problems reveal that the proposed IACO is effective and efficient.

Erfianto and Indrawan (2012) considered a new parameter of road congestion level as

an obstacle to the VRP, and presented the Multiobjective Ant Colony System (MOACS).

In  this  modified  algorithm,  the  level  of  congestion  affects  the  probability  of  route

selection in MOACS. MOACS itself has been used to solve the VRP, and is based on Ant

Colony System with Pareto approach (Baran & Schaerer, 2003).

The idea of this algorithm is to construct a feasible solution using the vehicle as much

as needed. Having obtained a feasible solution, the algorithm then performs checking of

the feasibility of such solutions to get into the Pareto set. This is done repeatedly until the

entire solution generated from one generation has been checked to obtain a Pareto set

Solution.

Simulation results showed that a higher level of road congestion can affect the value of

the  probability  of  the  road  path  to  be  selected.  A  congestion  level  of  0.9  makes  the

probability of selecting a road (33-22) decrease to 0.013, from 0.117 in conditions

without the congestion.
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Variations in the number of congested roads with a congestion level of 0.9 on the best

roads from the a state without congestion, can affect the total travel time required by a

vehicle. The more the number of congested roads the greater the total travel time required

by a vehicle. In a congestion scenario, MOACS that involve the level of congestion can

produce solutions with a total route travel time better than the original MOACS

algorithm.

2.3.5. Neural Networks

Neural networks are computational models composed of units that are richly

interconnected through weighted connections, like neurons in the human brain: a signal is

sent from one unit to another along a connection and is modulated through the associated

weight. Although superficially related to their biological counterpart, artificial neural

networks exhibit characteristics related to human cognition. In particular, they can learn

from experience and induce general concepts from specific examples through an

incremental adjustment of their weights. These models were originally designed for tasks

associated with human intelligence and where traditional computation has proven

inadequate, like artificial vision and speech comprehension. More recently, they have

been applied to combinatorial problems as well, starting with the pioneering work of

Hopfield and Tank (1985). The TSP, in particular, has been the subject of many

investigations with the Hopfield-Tank model, the elastic net (EN) (Durbin & Willshaw,

1987), and the self-organizing map (SOM) (Kohonen, 1988). The EN and SOM models

are quite remote from classical neural networks, but they have proved to be more

effective on the TSP than the Hopfield-Tank model. However, neither of these methods is

yet competitive with other meta-heuristics (Potvin, 1993).

2.4. Important Variants of the Vehicle Routing Problem

As research developed a number of researchers developed extensions to the basic VRP.

The goal was to develop more realistic models, to adapt to the larger number of

constraints of the real world. The following is a description of the most common variants.
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2.4.1. Split Delivery Vehicle Routing Problem

In the CVRP, one of the constraints states that each customer is serviced by exactly one

visit of a single vehicle. In the split delivery VRP (SDVRP), a customer can be serviced

by more than one vehicle, that is, a customer’s demand can be split among several

vehicles.  By  allowing  split  deliveries,  the  potential  exists  to  use  fewer  vehicles  and  to

reduce the total distance traveled by the fleet. However, we should note that in general,

for both the VRP and SDVRP, using fewer vehicles does not necessarily reduce the total

distance.

Research such as Burrows (1988) and Dror and Trudeau (1989) showed that by

allowing split deliveries, the total length of routes can be smaller by up to 10% compared

to CVRP.

A Savings based algorithm for solving SDVRP was introduced by Burrows (1988).

Wilck and Cavalier (2012) developed two hybrid genetic algorithms, each with a

different fitness approach, for the SDVRP for which they provided computational results

for thirty-two data sets from previous literature. Of the two fitness approaches, the second

fitness approach, ration of demand unit vs. distance unit, performed better than the first

fitness approach, shortest route, for most of the 32 data sets in terms of solution quality.

Neither fitness approach was better than the other in solution time.

2.4.2. Vehicle Routing Problem with Time Windows

The  VRP  with  Time  Windows  (VRPTW)  is  an  important  extension  of  the  CVRP  in

which service at every customer i must start within a given time window [ai,bi]. A vehicle

is allowed to arrive before ai and wait until the customer becomes available, but arrivals

after bi are prohibited. Time windows constraints are hard constraints when a route is not

feasible, if the service of a customer either starts before the earliest time or ends after the

latest time of the day established by the time window. These are Vehicle Routing

Problems with Hard Time Windows. In other cases, both lower and upper bounds of the

time window need not be satisfied, but can be violated at a penalty. These are Vehicle

Routing Problems with Soft Time Windows.

The VRPTW has numerous applications in distribution management. Common

examples are beverage and food delivery, newspaper delivery, and commercial and
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industrial waste collection (see e.g., (Golden, Assad & Wasil, 2002)). Solomon’s work

(Solomon,  1987)  was  one  of  the  first  studies  done  on  VRPTW.  In  his  work,  Solomon

presented a number of extensions to existing algorithms, such as the Savings algorithm,

for solving VRPTW.

Optimal solutions for small instances of the VRPTW, in which the single objective of

minimizing the total travel distance is considered, can be obtained using exact methods

(Desrochers, Desrosiers & Solomon, 1992). Current state of the art exact algorithms are

proposed by Chabrier (2006), Irnich and Villeneuve (2003), Jepsen, Petersen,

Spoorendonk and Pisinger (2006), Jepsen, Petersen, Spoorendonk and Pisinger (2008)

and Kallehauge, Larsen and Madsen (2006). To date, 45 out of 56 instances in Solomon's

benchmarks have been solved to optimality (Jepsen et al., 2006) using exact methods.

 Although exact methods can guarantee the optimality of the solution, they require

considerable computer resources in terms of both computational time and memory. As a

result, research on the VRPTW has concentrated on heuristics and meta-heuristics. For an

extensive list of studies of different heuristics and meta-heuristics for solving VRP, as

well as a comparison of the results obtained, the reader is referred to Bräysy and

Gendreau (2005a), Bräysy and Gendreau (2005b), Cordeau, Desaulniers, Desrosiers,

Solomon and Soumis (2001) and Golden, Raghavan and Wasil (2008).

As of today, state-of-the-art heuristics for the VRPTW consist of evolution strategies

(Homberger & Gehring, 2005; Mester & Bräysy, 2005), large neighborhood searches

(Bent & Van Hentenryck, 2004; E., G. & M., 2009; Pisinger & Ropke, 2007), iterated

local searches (Ibaraki et al., 2008; Ibaraki, Kubo, Masuda, Uno & Yagiura, 2001) and

multi-start local searches (Ibaraki et al., 2001; Lim & Zhang, 2007). It should be noted

that in all of these algorithms the hierarchical objective is considered and therefore these

state-of-the-art heuristics are all based on a two-stage approach, where the number of

routes is minimized in the first stage and the total travel distance is then minimized in the

second stage, allowing us to independently develop algorithms for the route, and for the

distance, minimization.

2.4.3. Multi-Depot Vehicle Routing Problem

Whereas  the  CVRP  has  been  studied  widely,  the  multi-depot  VRP  (MDVRP)  has

attracted less attention. In the MDVRP, customers must be serviced by one of several
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depots. As with the CVRP, each vehicle must leave and return to the same depot and the

fleet size at each depot must range between a specified minimum and maximum.

Early branch and bound algorithms were proposed by Laporte, Nobert and Arpin (1984)

for the case where the travel time matrix is symmetric, and by Laporte, Nobert and

Taillefer (1988) for the asymmetric case. The largest problems reported solved to

optimality involved 50 customers in the first case and 80 customers in the second case.

The first heuristics were proposed by Tillman (1969), Tillman and Hering (1971),

Tillman and Cain (1972), Wren and Holliday (1972), Gillett and Johnson (1976), Gillett

and Miller (1974), Golden et al. (1977) and Raft (1982), all using adaptations of standard

VRP procedures. Chao, Golden and Wasil (1993) proposed a better approach based again

on the record-to-record method. Renaud, Laporte and Boctor (1984) described a tabu

search heuristic yielding highly competitive results. It constructs an initial solution by

assigning each customer to its nearest depot and solving the resulting VRPs by means of

the Improved Petal heuristic (Renaud, Boctor & Laporte, 1996).

2.4.4. Time Dependent Vehicle Routing Problem

In the real world, especially in urban areas, the travel time is dependent on both the

distance between two customers and the time of day. Ignoring the fact that for some

routes the travel time changes throughout the day, we may obtain solutions that are far

from optimal. The Time-Dependent VRP (TDVRP) was developed in order to avoid just

such a mistake. Whereas most VRP variants look for the shortest paths in terms of length,

the TDVRP seeks the shortest paths in terms of travel time.

There has been limited research related to time-dependent vehicle routing compared to

other VRP models (Ichoua et al., 2003; Ji & Wu, 2011).

The time dependent VRP was first formulated by Malandraki (1989) and Malandraki

and Daskin (1992), using a mixed integer linear programming formulation. Malandraki

and  Daskin  treated  travel  time  as  a  function  of  both  distance  and  the  time  of  the  day

resulting in a piecewise constant distribution of the travel time. Although they only

incorporated the temporal component of traffic-density variability, they acknowledged its

importance. They developed two algorithms for solving the time-dependent vehicle-

routing problem. The first algorithm was a greedy nearest-neighbor algorithm (three
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variants of the algorithm were introduced), and the second was a branch and bound-based

algorithm that provided better solutions, but was suitable only for small problems.

Hill and Benton (1992) considered a time dependent VRP (without time windows) and

proposed a model based on time dependent traveling speeds that alleviates both the data

collection and data storage problems inherent in time-dependent travel speed vehicle

scheduling models. They also discussed the issue of developing algorithms to find near-

optimal vehicle schedules with time-dependent travel speeds .Computational results for

one vehicle and five customers were reported. Ahn and Shin (1991) discussed

modifications to the Savings, insertion, and local improvement algorithms to better deal

with TDVRP. In randomly generated instances, they reported computation time

reductions as a percentage of “unmodified” Savings, insertion, and local improvement

algorithms. Malandraki and Dial (1996) proposed a “restricted” dynamic programming

algorithm for the time dependent traveling salesman problem, i.e. for a fleet of just one

vehicle. A nearest-neighbor type heuristic was used to solve randomly generated

problems. Although it is argued that many different types of travel time functions can be

handled by this algorithm, results are only reported for step functions.

An important property for time dependent problems is the First In - First Out (FIFO)

principal (Ahn & Shin, 1991; Ichoua et al., 2003). A model with a FIFO property

guarantees that if two vehicles left the same location for the same destination (and

traveled along the same path), the one that left first would never arrive later than the

other. This is an intuitive and desirable property though it is not present in all models.

Earlier formulations and solutions methods (Geiger, 2001; Held & Karp, 1971; Hill &

Benton, 1992; Hong & Park, 1999; Malandraki, 1989; Malandraki & Daskin, 1992;

Malandraki & Dial, 1996) do not guarantee the FIFO property.

Ichoua et al. (2003) introduced a model that guarantees the FIFO principle. This model

is satisfied by working with step-like speed distributions and adjusting the travel speed

whenever a vehicle crosses the boundary between two consecutive time periods. The

algorithms that they developed, which were based on tabu-search meta-heuristics,

provided better solutions for most test scenarios.

Fleischmann, Gietz and Gnutzmann (2004) utilized route construction methods already

proposed in the literature, savings and insertion, to solve un-capacitated time dependent

VRP with and without time windows. Fleischmann et al. (2004) assume travel times to be
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known between all pairs of interesting locations and constant within given time slots.

Neighbor slots with similar travel times are joined to reduce memory requirements,  and

the transitions between slots are smoothed to ensure a FIFO property on travel times.

Fleischmann et al. (2004) tested their algorithms in instances created from Berlin travel

time data. Time dependent VRP with time windows was also addressed by Hashimoto,

Yagiura and Ibaraki (2008), who proposed an iterated local search algorithm.

Jung and Haghani (2001) and Haghani and Jung (2005) proposed a genetic algorithm to

solve time dependent problems. By formulating the problem as a mixed integer linear

programming problem, they obtain lower bounds by relaxing most of the integer

requirements. The lower bounds are compared with the primal solutions from the genetic

algorithm to evaluate the quality of the solutions. Using randomly generated test

problems, the performance of the genetic algorithm was evaluated by comparing its

results with exact solutions.

Van Woensel, Kerbache, Peremans and Vandaele (2008) used a tabu search to solve

CVRP with time dependent travel times (with no time windows). Approximations based

on queuing theory and the volumes of vehicles in a link were used to determine the travel

speed. Donati, Montemanni, Casagrande, Rizzoli and Gambardella (2008) proposed an

algorithm based on the ant colony heuristic approach and a local search improvement

approach. The algorithm was tested using a real life network in Padua, Italy, and some

variations of the Solomon problem set.

Ji and Wu (2011) proposed a revised scheme for the Artificial Bee Colony algorithm (a

new population-based metaheuristic approach proposed by Karaboga Dervis (2005),

inspired by the intelligent foraging behavior of a honeybee swarm), with improved

performance for solving Capacitated VRP with Time-dependent Travel Times. Using a

set of instances of different size, Ji and Wu (2011) showed that the ABC algorithm is

improved in terms of better solution achieved, greater robustness and higher

computational efficiency.

2.4.5. Stochastic Vehicle Routing Problem

A stochastic VRP arises when at least one of the problem's variables is random

(Gendreau, Laporte & Seguin, 1996). Over the years, different solution frameworks have

been developed for solving the problem (Shen Z., Ordónez & Dessouky, 2006). A
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taxonomy of these frameworks classifies them into dynamic or static types (Secomandi &

Margot, 2009).

Stochastic VRP can be divided into the following classes (Li X., Tian & Leung, 2010):

(1) VRP with stochastic demand (VRPSD), in which the vehicles serve a set of customers

with stochastic and uncertain demands (Bertsimas D. J., 1992; Gendreau, Laporte &

Seguin, 1995; Stewart, 1983; Tillman, 1969). (2) VRP with stochastic customers

(VRPSC),  in  which  each  customer  has  a  deterministic  demand  and  a  probability  p  of

being present. (3) VRP with stochastic customers and demands, a combination of VRPSD

and VRPSC. For a detailed survey of the SVRP, one may refer to Gendreau et al. (1996).

A stochastic model is usually modeled in two stages. In the first stage, a planned a

priori route is determined, followed by a realization of the random variables. In the

second stage, corrective action is applied to the solution of the first stage base on actual

information.

Methods modeled in two stages include a branch-and-bound method based on the

integer L-shaped algorithm for solving VRP with stochastic demands, proposed by

Laporte, Louveaux and Van Hamme (2002). In a more recent work, Rei, Gendreau and

Soriano (2007) tackled the single VRPSD (SVRPSD), a variant where only one route is

to be designed. Their method consists of using local branching to generate optimality cuts

on an integer L-shaped algorithm. Although successful, these approaches are limited to

solving instances of up to 100 customer nodes.

Stochastic travel times were introduced into the vehicle-routing problem by Laporte,

Louveaux and Mercure (1992), who presented a CCP model. Their aim was to find a set

of  paths  that  had  a  travel  time  that  was  no  longer  than  a  given  constant  value.  The

problem was solved optimally by means of an Integer L-shaped algorithm for 10 n 20

and two to five travel time scenarios (each scenario corresponds to a different travel

speed for the entire network).

In VRP with Stochastic Travel Times (VRPSTT), vehicles follow their  planned routes

and may incur a penalty if the route duration exceeds a given deadline. It is natural to

make  this  penalty  proportional  to  the  elapsed  route  duration  in  excess  of  the  deadline

(Laporte et al., 1992). Another possibility is to define a penalty proportional to the

uncollected demand within the time limit, as is the case in a money collection application



- 37 -

studied by Lambert, Laporte and Louveaux (1993). Wang X. and Regan (2001) have

proposed models for this class of problems in the presence of time windows.

In a more recent study, Kenyon and Morton (2003) have investigated properties of

VRPSTT solutions and have developed bounds on the objective function value. They

have developed two models for the stochastic VRP with random travel and service times

and an unknown distribution. The first model minimizes the expected completion time,

and the second model maximizes the probability that the operation is complete prior to a

pre-set target time T. Both models are based on a heuristic that combines branch-and-cut

and Monte-Carlo simulation which, if run to completion, terminates with a solution value

within a preset percentage of the optimum. Using small instances (9-nodes and 28-nodes)

Kenyon and Morton showed that using their models' solutions to VRPSTT can be

significantly better than solutions obtained by solving the associated mean-value model.

2.5. Multi-Objective Vehicle routing

VRPs are frequently used to model real cases. However, they are often set up with the

single objective of minimizing the cost of the solution, despite the fact that the majority

of the problems encountered in industry, particularly in logistics, are multi-objective in

nature. For instance, in real life there may be several costs associated with a single tour.

In these cases, it is possible to transform them into a single objective, using a common

factor, such as cost value. However, objectives may not always be limited to cost. In fact,

numerous other aspects, such as balancing of workloads (time, distance ...), can be taken

into account simply by adding new objectives (Jozefowiez et al., 2008).

Multi-objective routing problems are used mainly in three ways: (1) to extend classic

academic problems in order to improve their practical application, (2) to generalize

classic problems, and (3) to study real-life cases in which the objectives have been clearly

identified by the decision-maker and are dedicated to a specific real-life problem or

application.

2.5.1. Extending Classic Academic Problems

Multi-objective optimization is one possible way to study other objectives other than the

one initially defined, which is often related to solution cost. In this context, the problem

definition remains unchanged, and new objectives are added. The purpose of such
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extensions is often to enhance the practical applications of the model by recognizing that

logistics problems are not only cost driven. As an example of such an objective, we can

consider the following: (1) Driver workload – an extension to VRP in which the balance

of tour lengths is considered. This balance objective was added to increase the fairness of

the solution (Jozefowiez, Semet & Talbi, 2002; Jozefowiez N., Semet F. & Talbi E. G.,

2006b; Lee & Ueng, 1998). (2) Customer Satisfaction – an objective added to VRP with

time windows in order to improve customer satisfaction with regard to delivery dates

(Sessomboon et al., 1998). (3) Commercial Distribution –  an  extension  of  the  periodic

VRP that takes into account diverse objectives, including cost, balancing, and marketing

issues (Ribeiro, Louren o & Fargas, 2001).

Some multi-objective routing problems do not share common objectives with classic

routing  problems  at  all.  For  example,  Jozefowiez,  Semet  and  Talbi  (2009)  proposed  a

meta-heuristic method based on an evolutionary algorithm for solving a bi-objective

vehicle  routing  problem in  which  the  total  length  of  routes  is  minimized  as  well  as  the

balance of routes,  i.e.  the di erence between the maximal route length and the minimal

route length.

Chitty and Hernandez (2004) define a dynamic VRP in which the total mean transit

time and the total variance in transit time are minimized simultaneously. Likewise,

Murata and Itai (2005, 2007) define a bi-objective VRP which seeks to minimize both the

number of vehicles and the maximum routing time of those vehicles (makespan).

2.5.2. Generalizing Classic Problems

Another way to use multi-objective optimization is to generalize a problem by adding

objectives instead of one or several constraints and/or parameters. In the literature, this

strategy has notably been applied to VRP with time windows constraints, where the time

windows are replaced by one or several objectives (Baran & Schaerer, 2003; Gendreau &

Laporte, 1997; Hong & Park, 1999; Ombuki, Ross & Hanshar, 2006; Rahoual, Kitoun,

Mabed, Bachelet & Benameur, 2001; Tan K. C., Chew & Lee, 2006a).

Feillet, Dejax and Gendreau (2005) have described a class of problems, called traveling

salesman problems with profits (TSPP), which belong to this category. In these problems,

a profit, associated with each customer, can be collected when the customer is visited, but
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it is not necessary to visit all customers. The two conflicting objectives in such problems

are: (1) Maximize the profit by visiting the maximum number of customers, thus

increasing the length of the solution. (2) Minimize the length of the solution by visiting

fewer customers, thus decreasing the profit generated by the solution. An attempt to

address the traveling salesman problem with profits in its explicitly multi-objective form

was made by Keller C.P. (1985), and later by Keller C. P. and Goodchild (1988), who

referred to the problem as the multi-objective vending problem.

Another example of routing problem generalization is the bi-objective covering tour

problem (CTP) (Jozefowiez, Semet & Talbi, 2007a), which generalizes the covering tour

problem (Gendreau & Laporte, 1997). In the CTP, the goal is to find a tour on a network

subset, such that certain nodes are a given distance c from  visited  nodes.  In  the  bi-

objective generalization, the parameter c is  removed  and  replaced  by  an  objective  to

optimize the cover. The cover of the solutions is then computed according to the visited

nodes.

The traveling purchaser problem consists of determining a route through a subset of

markets in order to collect a set of products, while simultaneously minimizing the

traveling distance and the purchasing cost. This problem is usually solved as a single-

objective problem in which a single composite function is obtained by adding the

traveling distance and the purchasing cost. Riera-Ledesma and Salazar-Gonzalez (2005)

formulated the problem as a bi-objective mixed-integer linear program.

2.5.3. Studying Real-Life Cases

Multi-objective routing problems are also studied for a specific real-life situation, in

which decision makers define several clear objectives that they would like to see

optimized. As an example we can consider the two following real-life situations.

Bowerman, Hall and Calamai (1995) looked at schoolbus route planning for urban

areas, which is more complex than the classic VRP. The problem is to find a collection of

schoolbus routes that will ensure fair distribution of services to all eligible students, who

are located in different areas. The authors proposed a multi-objective mathematical model

with four objectives: (1) the minimization of the total route length, (2) the minimization

of the total student walking distance, (3) the fair distribution of the load, and (4) the fair

division between the buses of the total distance traveled.
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Similarly, Gupta, Singh and Pandey (2010) presented a case study with the overall goal

of developing a plan for the Jain University bus service to be able to serve all customers

in the most efficient way. In this study four objectives were considered: (1) the

minimization  of  the  total  route  length,  (2)  the  minimization  of  the  fleet  size,  (3)  the

maximization of average grade of customer satisfaction, and (4) the minimization of total

waiting time over vehicles.

In Lacomme, Prins and Sevaux (2006), trash had to be collected in the streets of the

town  of  Troyes  (France)  and  delivered  to  a  waste  treatment  facility.  This  problem  was

modeled as an arc-routing problem. The trucks left the factory at 6 a.m. and had to return

to the factory before a given hour since the workers had to sort the waste afterwards. The

authors considered two objectives: (1) the minimization of the total route length and (2)

the minimization of the longest route.

Motivated by the case of Lantmannen, a large distributor operating in Sweden, Wen,

Cordeau, Laporte and Larsen (2010) proposed a model to solve the dynamic multi-period

vehicle routing problem (DMPVRP). In the DMPVRP, customers place orders

dynamically over a planning horizon consisting of several periods. Each request specifies

a demand quantity, a delivery location and a set of consecutive periods during which

delivery can take place. The distributor must plan its delivery routes over several days so

as to (1) minimize the total travel time and (2) customer waiting, and (3) to balance the

daily workload over the planning horizon.

Faccio, Persona and Zanin (2011) studied the problem of municipality solid waste

collection optimization considering real time input data, homogeneous and variable fleet

size based in a single depot. In the study three objective functions were addressed: (1) the

minimization of the number of vehicles,  (2) the minimization of travel time and (3) the

minimization of total distance covered.

Anbuudayasankar, Ganesh, Lenny Koh and Ducq (2011) addressed the bi-objective

vehicle routing problems with forced backhauls, in which the optimization of the process

of replenishing money in ATMs is considered as a bi-objective problem which minimizes

the total routing cost and the span of travel tour.
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2.5.4. Most Common Objectives

The different objectives studied in the literature can be presented and classified

according to the component of the problem with which they are associated. The following

is  a  summary  of  the  most  common  objectives.  (1) Objectives related to the tour: (a)

Cost: Minimizing the cost of the solutions generated is the most common objective.

Generally speaking, minimizing cost is linked to an economic criterion; however, other

motivations are possible. For instance, in studies by Park and Koelling (1986; 1989), the

distance traveled must be minimized to avoid damaging the product being transported. (b)

Makespan: Corberan et al. (2002) and Pacheco and Marti (2005) presented a VRP in

which the makespan is minimized (i.e., to minimize the length of the longest tour). This

choice was motivated by the environment: a rural area in Spain, where due to the large

distances between pick-up locations, the bus routes tend to be long and the bus never full.

Minimizing the makespan ensures some fairness in terms of time spent on the bus by the

first student picked up, compared to the time spent by the last one. Minimizing the

makespan was also an objective for Lacomme et al. (2006), because the trash collection

had  to  be  finished  as  soon  as  possible  so  that  the  workers  would  have  time  to  sort  the

trash. (b) Balance: Some objectives are designed to even out disparities between the

tours. Such objectives are often introduced in order to bring an element of fairness into

play. Lee and Ueng (1998) incorporated balance to enhance fairness between drivers’

assignments. Balance was also an issue for Ribeiro et al. (2001). In their study, the tour

workload was equal to the volume transported during the period. (2) Objectives related

to node/arc activity:  Most  of  the  studies  dealing  with  objectives  related  to  node/arc

activity involve time windows (Augerat et al., 1998; Cordeau, Laporte, et al., 2005; Deb,

2001; Gendreau et al., 1994; Knowles J. D. & Corne, 2000). In such studies, the time

windows are replaced by an objective that minimizes either the number of violated

constraints  (Rahoual  et  al.,  2001),  the  total  customer  and/or  driver’s  wait  time  due  to

earliness or lateness (Baran & Schaerer, 2003; El-Sherbeny, 2001; Hong & Park, 1999),

or both objectives at the same time (Geiger, 2001, 2008). (3) Objectives related to

resources: The main resources encountered in the literature are vehicles and goods. One

objective that often appears is the minimization of the number of vehicles. For VRP with

time windows, the classic model has two objectives that are treated lexicographically
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(mining, in order of their importance). First, the number of vehicles is minimized, and

then the length of the solution is minimized for that given number of vehicles. The

existing research on multi-objective VRPs with time windows assigns the same level of

priority for both objectives, rather than considering them lexicographically. Other

vehicle-related objectives can be used to maximize vehicle cost-effectiveness in terms of

time (El-Sherbeny, 2001; Sessomboon et al., 1998) or capacity (Sutcliffe & Board, 1990),

while goods-related objectives can be introduced to take the nature of the goods into

account (merchandise is perishable and we want to avoid its deterioration (Park Y. &

Koelling, 1986; Park Y. B. & Koelling, 1989)).

Authors Problem Objectives

Current and Schilling
(1994)

Median tour problem,
Maximal covering tour
problem

(1) Min. the total length; (2) Max. the
accessibility of the nodes not included on the
tour

Doerner, Focke and
Gutjahr (2007)

Mobile healthcare facility
tour planning

(1) Min. the ineffectiveness of the personnel;
(2) Min. the average distance for an
inhabitant to walk; (3) Max. the size of the
population covered

Lee and Ueng (1998) VRP (1) Min. the traveled distance; (2) Optimize
the balance of the load (length)

Park Y. and Koelling
(1986); Park Y. B. and
Koelling (1989)

VRP (1) Min. the travel distance; (2) Max. the total
fulfillment of emergent services and
conditions; (3) Min. the total deterioration of
goods

Sessomboon et al. (1998) VRPTW (1) Min. the traveled distance; (2) Max. the
customer satisfaction; (3) Min. the number of
vehicles; (4) Min. the vehicle waiting times

Sutcliffe and Board (1990) VRP (1) Min. the traveled distance; (2) Min. travel
and boarding time; (3) Max. the equalization
of the vehicle travel times; (4) Max. the
equalization of the number of unused places
in each vehicle; (5) Max. the equalization of
the use of the ambulance to carry trainees in
wheelchairs.

Hansen M. P. (2000) Multi-Objective TSP (1) Min. the total costs (each objective is
associated with a different cost matrix)

Ribeiro et al. (2001) Multi-period VRP (1) Min. the traveled distance; (2) Optimize
the balance (number of visited customers);
(3) Marketing: driver/customer relationship

(Jozefowiez et al., 2002,
2006b; Jozefowiez, Semet
& Talbi, 2007b;
Jozefowiez et al., 2009)

VRP with tour balance (1) Min. the traveled distance; (2) Optimize
the balance of the tours (length)
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Authors Problem Objectives

Borges and Hansen (2002) Multi-objective TSP (1) Min. the total costs

Paquete and Stutzle (2003) Multi-objective TSP (1) Min. the total costs

Zhenyu, L., Lishan and
Guangming (2003)

Multi-objective TSP (1) Min. the total costs

Angel, Bampis and Gourv s
(2003)

Multi-objective TSP (1) Min. the total costs

Chitty and Hernandez
(2004)

Dynamic VRP (1) Min. the total mean transit time; (2) Min.
the total variance in transit time

Li W. (2005) Bi-objective TSP (1) Min. the total costs

Murata and Itai (2005,
2007)

Multi-objective VRP (1) Optimize makespan; (2) Min. the number
of vehicles

Keller C.P. (1985), Keller
C. P. and Goodchild (1988)

TSP with profit (1) Min. the tour length; (2) Max. the profit

Hong and Park (1999) VRPTW (1) Min. the total travel time; (2) Min. the
total customer waiting times

Geiger (2001) VRPTW (1) Min. the total distance; (2) Min. the time
window violation; (3) Min. number of
violated time windows; (4) Min. the number
of vehicles

Rahoual et al. (2001) VRPTW (1) Min. the traveled distance; (2) Min. the
number of violated constraints; (3) Min. the
number of vehicles

Baran and Schaerer (2003) VRPTW (1) Min. the total time; (2) Min. the total
delivery times; (3) Min. the number of
vehicles

Tan K. C., Chew and Lee
(2006b)

VRPTW (1) Min. the total length; (2) Min. the number
of vehicles

Jozefowiez, Semet and
Talbi (2004); Jozefowiez et
al. (2007a)

Covering tour problem (1) Min. the length; (2) Min. the cover

Riera-Ledesma and
Salazar-Gonzalez (2005)

Traveling purchaser
problem

(1) Min. the length; (2) Min. the purchasing
cost

Ombuki et al. (2006) VRPTW (1) Min. the total length; (2) Min. the number
of vehicles

Bowerman et al. (1995) Urban school bus routing (1) Min. the total length; (2) Min. the load
balance; (3) Min. the length balance; (4) Min.
the student walking distance

Giannikos (1998) Location and routing for
hazardous waste
transportation and treatment

(1) Min. of the total cost; (2) Min. of the total
perceived risk; (3) Equitable distribution of
risk among population centers; (4) Equitable
distribution of the disutility caused by the
operation of the treatment facilities

El-Sherbeny (2001) VRP adapted to the case of
a Belgian Transportation
company

(1) Min. the total time; (2) Optimize the
balance (length); (3) Max. the flexibility; (4)
Min. the waiting times; (5) Min. the number
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Authors Problem Objectives

of trucks; (6) Min. the number of covered
trucks; (7) Min. the number of uncovered
trucks; (8) Min. the unused working hours

Corberan et al. (2002) Rural school bus routing
problem

(1) Min. the makespan; (2) Min. the number
of vehicles

Lacomme et al. (2006) Capacitated arc routing
problem

(1) Min. the total length; (2) Min. the
makespan

Pacheco and Marti (2005) Rural school bus routing
problem

(1) Min. the makespan; (2) Min. the number
of vehicles

Zografos and
Androutsopoulos (2004)

VRPTW for hazardous
product transportation

(1) Min. the travel time; (2) Min. the
transportation risk

Tan K. C. et al. (2006a) Truck and trailer VRP (1) Min. the total length; (2) Min. the number
of vehicles

Mourgaya (2004) Multi-period VRP (1) Optimize the regionalization (clustering)
of the customers; (2) Optimize the balance of
the load

Gupta et al. (2010) Urban school bus routing (1) Min. the total length; (2) Min. fleet size;
(3) Max. average customer satisfaction; (4)
Min. total waiting time

Wen et al. (2010) Dynamic multi-period VRP (1) Min. total travel time; (2) Min. customers
waiting time; (3) Max. the balance of the
daily workload over the planning horizon.

Faccio et al. (2011) Municipality solid waste
collection

(1) Min. number of vehicles; (2) Min. total
travel time; (3) Min. total travel length

Anbuudayasankar et al.
(2011)

Bi-objective VRP with
forced backhauls

(1) Min. total routing cost; (2) Min. maxspan

Table 2.1 – Summary of recent multi-objective VRP and related problems

Objective Authors

Min. the total costs (each objective is
associated with a different cost matrix)

Hansen M. P. (2000), Borges and Hansen (2002),
Paquete and Stutzle (2003), Zhenyu et al. (2003), Angel
et al. (2003), Li W. (2005), Keller C.P. (1985), Keller C.
P. and Goodchild (1988), Riera-Ledesma and Salazar-
Gonzalez (2005)

Max. The profit Keller C.P. (1985), Keller C. P. and Goodchild (1988)

Min. The purchasing cost Riera-Ledesma and Salazar-Gonzalez (2005)

Table 2.2 – Summary of objectives found in recent multi-objective TSP

Objective Authors

Marketing: driver/customer relationship Ribeiro et al. (2001)

Max. the equalization of the use of the
ambulance to carry trainees in wheelchairs.

Sutcliffe and Board (1990)



- 45 -

Objective Authors

Max. The customer satisfaction Sessomboon et al. (1998); Gupta et al. (2010)

Max. the equalization of the number of unused
places in each vehicle

Sutcliffe and Board (1990)

Max. the equalization of the vehicle travel
times

Sutcliffe and Board (1990)

Max. The flexibility El-Sherbeny (2001)

Max. the total fulfillment of emergent services
and conditional

Park Y. and Koelling (1986); Park Y. B. and Koelling
(1989)

Min. The number of covered trucks El-Sherbeny (2001)

Min. The number of uncovered trucks El-Sherbeny (2001)

Min. The number of vehicles Sessomboon et al. (1998); Murata and Itai (2005, 2007);
Geiger (2001); Rahoual et al. (2001); Baran and
Schaerer (2003); El-Sherbeny (2001); Tan K. C. et al.
(2006a); Ombuki et al. (2006); Tan K. C. et al. (2006b);
Gupta et al. (2010); Faccio et al. (2011)

Min. the number of violated constraints/time
windows

Rahoual et al. (2001); Geiger (2001)

Min. The total deterioration of goods Park Y. and Koelling (1986); Park Y. B. and Koelling
(1989)

Min. (customers) waiting times Hong and Park (1999); El-Sherbeny (2001);
Sessomboon et al. (1998); Gupta et al. (2010); Wen et al.
(2010)

Min. The total delivery times Baran and Schaerer (2003)

Min. The total length Tan K. C. et al. (2006b); Ombuki et al. (2006); Tan K.
C. et al. (2006a); Lee and Ueng (1998); Park Y. and
Koelling (1986); Park Y. B. and Koelling (1989);
Sessomboon et al. (1998); Sutcliffe and Board (1990);
Ribeiro et al. (2001);(Jozefowiez et al., 2002, 2006b,
2007b, 2009); Geiger (2001); Rahoual et al. (2001);
Gupta et al. (2010); Faccio et al. (2011)

Min. The total mean transit time Chitty and Hernandez (2004)

Min. The total travel time Hong and Park (1999); Baran and Schaerer (2003); El-
Sherbeny (2001); Zografos and Androutsopoulos (2004);
Wen et al. (2010); Faccio et al. (2011)

Min. The total variance in transit time Chitty and Hernandez (2004)

Min. The transportation risk Zografos and Androutsopoulos (2004)

Min. the unused working hours El-Sherbeny (2001)

Min. travel and boarding time Sutcliffe and Board (1990)

Optimize makespan Murata and Itai (2005, 2007); Anbuudayasankar et al.
(2011)

Optimize the balance (number of visited
customers)

Ribeiro et al. (2001)

Optimize the balance of the load (length) Lee and Ueng (1998); Mourgaya (2004)
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Objective Authors

Optimize the balance of the tours (length) Jozefowiez et al. (2002, 2006b); Jozefowiez, Semet and
Talbi (2007c); Jozefowiez et al. (2009); El-Sherbeny
(2001); Wen et al. (2010)

Optimize the regionalization (clustering) of the
customers

Mourgaya (2004)

Min. total route costs Anbuudayasankar et al. (2011)

Table 2.3 – Summary of objectives found in recent multi-objective VRP

2.5.5. Multi-Objective Optimization Algorithms

Over the last several years, many techniques have been proposed for solving multi-

objective problems. These strategies can be divided into three general categories: (1)

scalar methods, (2) Pareto methods, and (3) methods that belong to neither the first nor

the second category.

The most popular scalar method is weighted linear aggregation. However, this method

has several disadvantages. Nevertheless, this technique is relatively simple to implement

and can be used with any of the single-objective heuristics or meta-heuristics described in

the literature. For multi-objective routing problems, weighted linear aggregation has been

used with specific heuristics (Blasum & Hochstattler, 2000; Haghani & Jung, 2005;

Murata & Itai, 2005), local search algorithms (Paquete & Stutzle, 2003; Ribeiro et al.,

2001), and genetic algorithms (Ombuki et al., 2006).

Being a population-based approach, GAs are well suited to solve multi-objective

optimization problems. A generic single-objective GA can be modified to find a set of

multiple non-dominated solutions in a single run. The ability of GA to simultaneously

search different regions of a solution space makes it possible to find a diverse set of

solutions for difficult problems with non-convex, discontinuous, and multi-modal

solutions spaces. The crossover operator of GA may exploit structures of good solutions

with respect to different objectives to create new non-dominated solutions in unexplored

parts of the Pareto front. In addition, most multi-objective GAs do not require the user to

prioritize, scale, or weigh objectives. Therefore, GAs have been the most popular

heuristic approach to multi-objective design and optimization problems. Jones, Mirrazavi

and Tamiz (2002) reported that 90% of the approaches to multi-objective optimization

aimed  to  approximate  the  true  Pareto  front  for  the  underlying  problem.  A  majority  of
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these used a meta-heuristic technique, and 70% of all meta-heuristics approaches were

based on evolutionary approaches.

Pareto methods use the notion of Pareto dominance directly. This approach was mainly

introduced by Goldberg (1989) for genetic algorithms. Though it does not allow one

compromise to be favored over another, it can be a useful aid for the decision-makers. In

multi-objective vehicle routing problems, the Pareto concept is frequently used within an

evolutionary framework. Many authors (Doerner et al., 2007; Geiger, 2001; Jozefowiez et

al., 2002, 2004; Jozefowiez N., Semet F. & Talbi E .G., 2006a; Jozefowiez et al., 2007a;

Lacomme et al., 2006; Murata & Itai, 2005, 2007; Ombuki et al., 2006; Rahoual et al.,

2001; Sessomboon et al., 1998; Tan K., Lee, Chew & Lee, 2003; Tan K. C. et al., 2006b;

Zhenyu  et  al.,  2003)  have  used  evolutionary  algorithms  with  Pareto  methods  to  solve

multi-objective routing problems. Some of them have proposed hybrids based on

evolutionary algorithms and local searches, heuristics, and/or exact methods for the

considered problem (Doerner et al., 2007; Jozefowiez et al., 2002; Jozefowiez et al.,

2006a; Jozefowiez et al., 2007a, 2007b; Lacomme et al., 2006; Sessomboon et al., 1998;

Tan K. et al., 2003; Tan K. C. et al., 2006a, 2006b).

Some studies do not employ either scalar or Pareto methods to solve multi-objective

routing problems. In this case, these non-scalar and non-Pareto methods are based on

genetic algorithms, lexicographic strategies, ant colony mechanisms, or specific

heuristics. Doerner et al. (2007) proposed using VEGA (Vector Evaluated Genetic

Algorithm) to solve their problem. In VEGA, at each iteration, the population is divided

into n subpopulations, where n is the number of objectives, which are mixed together to

obtain a smaller population to which genetic operators are applied. In lexicographic

methods, the objectives are each assigned a priority value, and the problems are solved in

order of decreasing priority. When one objective has been optimized, its value cannot be

changed and it becomes a new constraint for the problem. Such a lexicographic approach

has been used by Keller C.P. (1985), Keller C. P. and Goodchild (1988) and Current and

Schilling (1994). Baran and Schaerer (2003) do not use a standard multi-objective

approach, but rather consider the multi-objective nature of the problem via mechanisms

in  the  ant  colony  system  they  propose.  Chitty  and  Hernandez  (2004)  also  use  an  ant

colony system. The ant colony paradigm is adapted to the bi-objective situation by using

two types of pheromones, one for the total mean transit time and one for the variance in
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the transit time. Alternatively, to solve their problem, Doerner et al. (2007) treat the

location and routing aspects simultaneously by means of P-ACO (Pareto Ant Colony

Optimization). P-ACO is a multi-objective meta-heuristic that generalizes the Ant Colony

Optimization (ACO) meta-heuristic to the case of several objective functions,

determining approximations to the set of optimal Pareto solutions.

2.6. Real-Time Vehicle routing

Due to recent advances in information and communication technologies, vehicle fleets

can now be managed in real-time. When jointly used, devices like geographic

information systems (GIS), global positioning systems (GPS), traffic flow sensors and

cellular telephones are able to provide relevant real-time data, such as current vehicle

locations, new customer requests and periodic estimates of road travel times (Brotcorne,

Laporte & Semet, 2003). If suitably processed, this large amount of data can, in principle,

be used to reduce cost and improve service level. To this end, revised routes have to be

timely generated as soon as new events occur.

In recent years, three main developments have contributed to the acceleration and

quality of algorithms relevant in a real-time context: (1) Increase in computing power due

to better hardware. (2) Development of powerful meta-heuristics whose main impact has

been on solution accuracy, even if this gain has sometimes been achieved at the expense

of  computing  time.  (3)  Development  has  arisen  in  the  field  of  parallel  computing.  The

combination of these three features has yielded a new generation of powerful algorithms

that can effectively be used to provide real-time solutions in dynamic contexts (Ghiani et

al., 2003).

A real-time VRP, also known as dynamic VRP, due to the nature of information needed

to come up with a set of good vehicle routes and schedules, which is dynamically

revealed to the decision maker, can be either deterministic or stochastic (Powell W. B.,

Jaillet & Odoni, 1995). In deterministic-dynamic problems, all data are known in advance

and  some  elements  of  information  depend  on  time.  For  instance,  the  VRP  with  time

windows reviewed in (Cordeau et al., 2001) belongs to this class of problems. In

stochastic-dynamic problems uncertain data are represented by stochastic processes. For

instance, user requests can behave as a Poisson process (as in (Bertsimas D. & Van

Ryzin, 1990)). Since uncertain data are gradually revealed during the operational interval,
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routes are not constructed beforehand. Instead, user requests are dispatched to vehicles in

an on-going fashion as new data arrive (Psaraftis, 1988).

The events that lead to a plan modification can be (1) arrival of new user requests (or

cancellations), (2) arrival of a vehicle at a destination and (3) update of travel times.

Every event must be processed according to the policies set by the vehicle fleet operator.

When a new request is received, one must decide whether it can be serviced immediately,

delayed or rejected. If the request is accepted, it is assigned to a position in a vehicle

route. If another event occurs, the request might be assigned to a different position in the

same vehicle route, or even dispatched to a different vehicle. At any time each driver

needs to know his next stop. Hence, when a vehicle reaches a destination it has to be

assigned a new destination. Due to advances in communication technologies, route

diversions and reassignments are now a feasible option and should take place if this

results in a cost saving or in an improved service level (Gendreau & Potvin, 1998;

Ichoua, Gendreau, Potvin, op?rationnelle & Universit? de, 2000). Finally, if an improved

estimation  of  vehicle  travel  times  is  available,  it  may  be  useful  to  modify  the  current

routes or even the decision of accepting a request or not.

Most solution approaches to the VRP are in practice implemented in a centralized

computer resource, producing a daily plan to be provided to the vehicles before the

beginning of the distribution execution. Some of these approaches have been

implemented in commercial systems successfully used by numerous transportation,

logistics and manufacturing companies over the last 20 years.

These systems have not, however, been designed to address the case in which the

execution of delivery cannot follow the plan as prescribed, due to some unforeseen event.

When there is need for real-time intervention, it may be necessary to re-compute the plan

using new input data. If a typical VRP approach is used for re-planning (i.e. re-planning

the whole schedule from scratch), many vehicle schedules may be affected, thus causing

significant performance inefficiencies (high overhead, nervousness, errors, and high

costs).

Thus, re-planning based on classical VRP solution methods may not be a realistic

option. In the absence of algorithms capable of “isolating” the part of the VRP affected

by the unexpected event in order to minimize the disturbance to the overall schedule,

interventions are typically performed manually (for example, through voice
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communication between drivers and the logistics manager) and the quality of decisions

taken is naturally affected.

As pointed out by Psaraftis (1988) and Psaraftis (1995), real-time VRPs possess a

number of unique features, some of which have just been described.; The remaining

characteristics are: (1) Quick response - Real-time routing and dispatching algorithms

must provide a quick response so that route modifications can be transmitted timely to the

fleet. To this end, two approaches can be used, simple policies (like the first-come first

served (FCFS) policy (Bertsimas D. & Van Ryzin, 1990)), or more involved algorithms

running on parallel hardware (like the tabu search heuristics described in (Gendreau,

Guertin, Potvin & S?guin, 2006; Gendreau, Guertin, Potvin & Taillard, 1999)). The

choice between them depends mainly on the objective, the degree of dynamism and the

demand rate. For each real-time problem, it is important to specify the time horizon (also

know  as  planning  horizon)  –  a  fixed  point  in  time  at  which  certain  processes  will  be

evaluated - in order to determine how long to wait before taking action; in other words,

we have to define the term “quick response.” (2) Denied or deferred service -  In  some

applications it is valid to deny service to some users, or to forward them to a competitor,

in order to avoid excessive delays or unacceptable costs. For instance, in Gendreau et al.

(1999) requests that cannot be serviced within a given time window are rejected. When

no time windows are imposed, some user requests can be postponed indefinitely because

of their unfavorable location. This phenomenon can be avoided by imposing dummy time

windows, or by adding a non-linear delay penalty to the objective function. (3)

Congestion - If the demand rate exceeds a given threshold, the system becomes saturated,

i.e., the expected waiting time of a request grows to infinity.

2.7. Summary
The Vehicle-Routing Problem (VRP) is a common name for problems involving the

construction of a set  of routes for a fleet  of vehicles.  The vehicles start  their  routes at  a

depot, call at customers, to whom they deliver goods, and return to the depot. The

objective function for the vehicle-routing problem is to minimize delivery cost by finding

optimal routes, which are usually the shortest delivery routes.

The basic VRP consists of designing a set of delivery or collection routes, such that (1)

each route starts and ends at the depot, (2) each customer is called at exactly once and by
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only one vehicle, (3) the total demand on each route does not exceed the capacity of a

single vehicle, and (4) the total routing distance is minimized. It is common to address the

basic VRP as Capacitated Vehicle-Routing Problem (CVRP).

VRP has been solved optimally using Branch-and-Bound algorithms, Set-Covering and

Column Generation algorithms, Branch-and-Cut algorithms, Dynamic algorithms and

more.

Since VRP is an NP-Hard problem, many heuristics have been developed for solving it.

The classic algorithms include, among others, the Savings algorithms, Swap algorithm

and the Fisher and Jaikumar algorithm. Meta-heuristics algorithms, such as Simulated

Annealing, Tabu Search, Genetic Algorithms, Ant Systems Algorithms and Neural

Networks are also used in solving VRPs.

As research developed a number of researchers developed extensions to the basic VRP.

The goal was to develop more realistic models, to adapt to the larger number of

constraints of the real world. The following is a description of the most common variants.

Such extensions include the Split Delivery Vehicle Routing Problems (a customer can be

served by more than one vehicle), Vehicle Routing Problems with Time Windows (a

customer must be served within a given time window), Multi-Depot Vehicle Routing

Problems, Time Dependent Vehicle Routing Problems (traveling time may change during

the day), Stochastic Vehicle Routing Problems, Multi-Objective Vehicle Routing

problems and Real-Time Vehicle Routing Problems.
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3. Problem Formulation
 This chapter describes the formulation of the real-time multi-objective vehicle routing

problem stated in chapter 1. The problem is formulated as a mixed integer linear

programming problem on a network. This chapter is divided into four sections. The first

section explains the assumptions and limitations of the model. The second section deals

with the notations and variables used in the model formulation. The third section

introduces the objective function. The fourth section deals with the constraints of the

formulation. We summarize this chapter in the last section.

3.1. Assumptions and Limitations

3.1.1. Demand Characteristics

The problem formulated in this research considers a system with dynamic conditions.

These conditions include the real-time variation in travel times between the depot and the

customers as well as between the customers themselves and real-time service requests.

Since there is no end of service time constraint, demands can be requested at any time

during the day.

When rerouting during the day, demands can be divided into two groups, recent

demands and longstanding demands. The demands already assigned to the vehicles in the

last routing process are the longstanding demands, and demands that are requested after

the last routing process are the recent demands. All demands, longstanding and recent,

have to be served. New demands can be assigned to any of the vehicles without any

restriction, as long as the remaining capacity of the vehicles allows it; otherwise, a new

vehicle has to be delivered.

All demands have specified service times and service time intervals (generally time

windows are described with intervals such as [a, b]). We consider soft time windows for

service around the desired service time because soft time windows are more realistic and

more  flexible  than  hard  time  windows.  A  soft  time  windows  formulation  can  have

solutions in cases where a hard time windows formulation fails.
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Each customer is assigned with a satisfaction or penalty function. These functions

describe customers’ satisfaction/dissatisfaction when customers’ demands are not

fulfilled on time as a function of the deviation from the customer’s time window.

3.1.2. System Characteristics

Network: In this study a transportation network is considered. While there may exist

more than one trajectory between two nodes (customers and the depot) with shortest

traveling times, each for a different time of the day, this case is not considered

(however, this should not be a problem if a large number of customers are

considered). For every two nodes the shortest path is calculated. Based on distance

between every two nodes and information about traveling time, the average driving

speed between every two nodes can be calculated. Time-dependent travel time

information is supplied in the form of a matrix of travel times between the demand

nodes.

Travel Time: Travel times are lognormally distributed. Using lognormal distribution

is more suitable than normally distributed because (1) the positive skew shape (i.e.,

right skewed) is more suitable for travel time description; that is, a higher probability

exists for long travel time than for short  travel time, and (2) the range [0,  )  of the

distribution is more natural than a truncated normal distribution (the probability

distribution of a normally distributed random variable whose value is either bounded

below, above or both), because negative travel times are impossible.

According to Law and Kelton (1991), let ~ ( , )xxx Log , and ~ , )( y yy ,

such that the following relations exist:

lny x     (3.1)
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ln1
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2
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    (3.2)
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x e     (3.3)

2 222 1y y y
x e e     (3.4)

http://en.wikipedia.org/wiki/Normally_distributed
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Equation (3.1) describes the relation between the two random variables, (3.2)

describes the lognormal probability distribution function, and Equations (3.3), (3.4),

(3.5), and (3.6) describe the conversion between the expectancies and variances.

In order to combine correlations within the travel time distribution, the multivariate

lognormal distribution was used (Mood, Graybill & Boes, 1974). Let X be  a

multivariate lognormal distribution with the mean vector 1 2( , ,..., )d  and

covariance matrix  with ( , )i j th entry ij , so the correlation coefficients are

ij

ii j
i

j
j  and Equations (3.7) and (3.8) define the covariance and correlation

coefficient.

cov , 1 exp
2

ij
i j i

ii
j

jjx x e     (3.7)

1co ,
1 1

ij

jjii
i j

er x x
e e

    (3.8)

If for two vehicles, the travel time distribution is defined as a bivariate lognormal

distribution  with   =  ( ,  )  and
2 2

2 2
,  then,  according  to  Mood  et  al.

(1974), the conditional distribution of 2x  given 1x x  is lognormal with

2
2 1

1
2 x     (3.9)

and
2 2 2
2 2 1   (3.10)

With one additional parameter ( ), it is straightforward to estimate the parameter as a

constant or as a function of the time gap between the vehicles.
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Vehicles: All vehicles in the proposed model have the same capacity.

Information System: We assume that there is a real-time communication system

between the vehicles and the control center. The control center has information about

the location of all vehicles as well as real-time traveling time information. All

vehicles are equipped with route guidance systems.

Number of depots: The real-time multi-objective VRP in this dissertation is a single

depot problem.

3.2. Variables and Problem Definition
The following is a list of variables used in the problem formulation presented next, the

objective functions and the constraints.

V Set of nodes, including the depot and the demand nodes

E Set of edges

N Number of customers (customer number 0 denotes the depot)
t
id Demand of demand node i requested at time t.

t
iD  The total demand of customer i at time t . t

iD  is defined as

1

0 0 1 1 0

S St tN N M
t t mt
i j ij

t i j m t
d d x , which means that the demand of a customer equals the

sum of all customers’ demands received between time interval of 0t  to time

St t  minus the demands that already have been served. For customer 0, which is

the depot, 0St
id  for all St .

mt
ijx A decision variable, defined as 1 if vehicle m traveled from node i to node j at

time t. where st t , and 0, otherwise.

mt
ijx Known decision variable, defined as 1 if vehicle m traveled from node i to node j

at time t. where st t , and 0, otherwise.

St Time  of  routing  plan.  The  time  of  routing  plan  can  start  at 0st  and  end  at

St T .

t
ijC A stochastic time-dependent nonnegative cost function, which represents the
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travel cost from vertex i to vertex j starting at time t.
t

ijC Known cost for traveling from node i to node j at time t, where st t

M The maximum number of vehicles available

Q capacity of a vehicle (all vehicles have the same capacity)
m
St The last departure time of vehicle m from the depot. m

St  is  defined  as

max 0,..., S
m
St t t  which satisfies 0

0

1
N

mt
j

j
x , and there is no 0,. .,ˆ . St t ,

such that t̂ t  and ˆ
0

0

1
N

mt
j

j
x . If such m

St  does not exist, then m
S St t .

St
iv

Does a customer require a visit at time St . St
iv  is defined as

1 0
0

S
S

t
t i
i

d
v

otherwise
.

S
iTW Start of time window of customer i

E
iTW End of time window of customer i

iEET Endurable earliness time - the earliest service time that customer i can endure

when a service starts earlier than S
iTW .

iELT Endurable lateness time - the latest service time that customer i can endure when

a service starts later than E
iTW  .

iST Service time at customer i.

iST Known service time at customer i.

iWT Waiting time at customer i.

iWT Known waiting time at customer i.

Using the previously described variables, the real-time multi-objective VRP can be

defined as follows.

At time st , let ,G V E  be a complete graph, where 0,1,...,V n  is the nodes set

and E is the edge set. Each node \ 0i V  represents a customer (or a demand node),

having a non-negative (0 or higher) demand St
iD , whereas vertex 0 corresponds to the

depot. Each edge , : , ,e E i j i j V i j  is associated with a stochastic time-
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dependent nonnegative cost, t
ijC , which represents the travel cost (equal to the travel

time) spent to go from vertex i to vertex j starting at time t. The use of the loop edges,

(i,i), is not allowed (this is imposed by defining t
iic  for all i V ). A fixed fleet of

M identical vehicles, each of capacity Q, is available at the depot.

The real-time multi-objective VRP calls for the determination of a set of at most M

vehicles that optimizes the following objectives:

(1) Minimizing the total traveling time.

(2) Minimizing the number of vehicles used.

(3) Maximizing customers' satisfaction, or minimizing customers' dissatisfaction.

(4) Maximizing tour's balance

satisfying the following constraints:

(1) Each customer, whose demand at time st  equals 0 is not visited at all.

(2) Each customer, whose demand at time st  is higher than 0, is visited exactly once by

one route.

(3) For every driving vehicle at time st , whose destination node is a customer, there must

exist a corresponding route, which starts at the vehicle’s destination node.

(4) For every vehicle whose current location, at time st ,  is  a  demand  node,  there  must

exist a corresponding route, which starts at the vehicle’s current location.

(5) All other routes start at the depot.

(6) All routes end at the depot.

(7) The  total  demand  of  the  customers,  known  at  time st  ,  served  by  a  route  does  not

exceed the vehicle capacity Q.

3.3. Objectives

Since this is a multi-objective problem, several objective functions are considered.

3.3.1. Minimizing the Travel Time

The first objective considered is minimizing the total travel time, and is described in

equation (3.11).
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1

0 0 1 0

0 0 1

min max ,

max ,

S

S

tN N M
t S mt

j jij j ij
i j m t

N N M T
t S mt
ij j j j ij

i j m t t

SZ C TW t

C TW t ST W

T

T x

T W x
  (3.11)

The time passed since a vehicle left node i (either the depot or a customer) towards node

j and the time it left node j can be calculated in the following way.

Consider the traveling cost (time) from node i to node j when leaving node i at time t. If

by leaving node i at time t a vehicle reaches node j before  its  time  window's  start  time

(meaning t S
ij jt C TW ),  then  the  vehicle  has  to  wait  until  the  beginning  of  the  time

window in order to start serving. Otherwise, it starts serving upon arrival. The time

between the time the vehicle left node i towards node j, denoted as t, and the time it starts

serving node j can be formulated as max ,t S
ij jC TW t . If node j is a customer, then both

service time at customer j, jST , and waiting time at customer j, jWT , have to be added to

the traveling time. But, if node j is the depot, then both service time, jST , and waiting

time, jWT , equal 0. Therefore, the time passed since a vehicle left node i towards node j

and the time it left node j can be defined as max ,t S
ij j j jC TW t ST WT .

For each edge , : , ,e E i j i j V i j , there exists a decision variable mt
ijx ,

defined as 1 if edge e was traveled at time t by vehicle m, otherwise it is 0. Multiplying

the above notation, max ,t S
ij j j jC TW t ST WT , by the decision variable mt

ijx , gives us

the time passed since vehicle m left  node i towards node j at time t and the time it left

node j, if such vehicle exists, otherwise it is 0.

Let's refer to the time passed since vehicle m left node i towards node j at time t and the

time  it  left  node j multiplied by the decision variable,

max ,t S mt
ij j j j ijC TW t ST WT x , as the true travel time from node i to node j. By

summing all possible true travel times,
0 0 1 0

max ,
N N M T

t S mt
ij j j j ij

i j m t

C TW t ST WT x ,

we get the total travel time, which is to be minimized.
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The total travel time can be decomposed into two parts, the known travel time and the

unknown  travel  time.  If  the  planning  time st  is  not  equal  to  0,  then  we  are  not  at  the

beginning of the day, and some vehicles have already been sent to customers. In this case,

information regarding traveled edges, travel costs, service time and waiting time is

already known for every edge traveled and for every customer visited before st .

Let t
ijC  denote the known cost from traveling from node i to node j at time t, where

st t . Similarly, let mt
ijx  denote the known decision variable, defined as 1 if vehicle m

traveled from node i to node j at time t. where st t ,  and  0,  otherwise.  The  known

traveled cost can be defined as
1

0 0 1 0
max ,

StN N M
t S mt

j jij j ij
i j m t

SC T T WTW t x .

The unknown traveling cost can be defined as

0 0 1

max ,
S

N N M T
t S mt
ij j j j ij

i j m t t

C TW t ST WT x , therefore, the total traveling cost is the

sum  of  the  known  traveling  cost  and  the  unknown  traveling  cost,
1

0 0 1 0

0 0 1

max ,

max ,

S

S

tN N M
t S mt

j jij j ij
i j m t

N N M T
t S mt
ij j j j ij

i j m t t

C TW t

C TW t ST WT

ST W

x

T x

3.3.2. Minimizing Number of Vehicles

Since in the real world, the fixed cost of using additional vehicles is higher then the

routing operation costs, we can reduce the total cost by minimizing the number of

vehicles in service.
1

0 0
1 1 0 1 1

min
s

s

t tN M N M T
mt mt

j j
j m t j m t t

Z x x     (3.12)

The total number of vehicles can be defined as the number of vehicle leaving the depot.

3.3.3. Maximizing Customers' Satisfaction

In  a  traditional  VRPTW,  a  feasible  solution  must  satisfy  all  time  windows.  When  a

customer is served within his specified time window, the supplier’s service level is
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satisfactory; otherwise, it is not. Hence, a customer’s satisfaction level (also the supplier’s

service level) can be described using a binary variable. The customer satisfaction level

takes 1 if the service time falls within the specified time window, and 0 if it does not. The

service level function of the customer can be described by Figure 3.1.

Figure 3.1 – The service level function of a hard time window

Time windows may sometimes be violated for economic and operational reasons.

However, there exist certain bounds on the violation (earliness or lateness) that a

customer can endure. The following two concepts are introduced to describe these

bounds.

Let iEET  denote endurable earliness time, the earliest service time that customer i can

endure when a service starts earlier than S
iTW , and let iELT  denote endurable lateness

time, the latest service time that customer i can endure when a service starts later

than E
iTW .

An  example  is  given  to  describe  the  relationship  of S
iTW , E

iTW , iEET  and iELT .  A

factory needs some kind of raw material for its daily production. Every day, the factory

opens at 8:00 and production starts at 10:00. The raw material is shipped from an

upstream supplier and the process of unloading the raw material requires 30 min. The

factory specifies its preferred delivery time window to be [8:30, 9:00], because materials

delivered within that time window can be directly moved to the workshop without any

tardiness. However, the factory is not operating in a just-in-time mode; the delivery can
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be a little earlier or later than the specified time window. A reasonable combination of

EET and ELT could be [8:00, 9:30]. If the materials are delivered within [8:00, 8:30],

then instead of being moved directly into the workshop, they must be moved into the

warehouse to wait due to limited space in the workshop. This is of course not what the

manager of the factory wants to see, but he/she can accept it. If the materials are

delivered within [9:00, 9:30], no inventories have to be held; however, this demands that

the execution of the production plan have higher accuracy, which reduces the robustness

of the production operations in the factory. Since the factory opens at 8:00, deliveries

before 8:00 must wait outside the factory; since the production procedure starts at 10:00,

delivery after 9:30 is totally unacceptable because of the 30-min unloading process.

Simply put, although the manager of the factory will be happiest to be served within

[8:30, 9:00], he/she will also be reasonably satisfied if served within [8:00, 8:30] or [9:00,

9:30]; however, the consequence is that the customer’s satisfaction will go down, and

deliveries made before 8:00 or after 9:30 are not acceptable. Similar scenarios also appear

in dial-a-ride problems.

Figure 3.2 – The service level function of fuzzy time windows

As discussed above, the service may start outside the time window ,S E
i iTW TW , and

the bounds of acceptable earliness and lateness are described by iEET  and iELT ,

respectively. Obviously, the earliness and lateness are closely related to the quality of

service of the supplier. The response of a customer satisfaction level to a given service
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time may not be simply “good” or “bad”; instead, it may be between “good” and “bad”.

For example, the customer might say, “it’s all right” to be served within , S
i iEET TW  or

,E
i iTW ELT . In either case, the service level cannot be described by only two states (0

or 1).

For problems involving personal human feelings, fuzzy set theory is a strong tool.

Intuitively, with the concepts of iEET  and iELT , the supplier’s service level for each

customer can be described by a fuzzy membership function:
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when in most recent research, if t is defined as

i
i S

i i

t EETf t
TW EET

    (3.14)

and ig t  is defined as

( ) i
i E

i i

ELT tg t
ELT TW

    (3.15)

However, since customer’s satisfaction level, as a function of the deviation from the

customer’s time window, in most cases cannot be described as a linear function, the

following function, which better describes customer's satisfaction, is used.
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TW EET

f t     (3.16)
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g t     (3.17)

Assuming that each customer has his own satisfaction function, iS t , and that the

service provider assigns an importance factor, i , to each customer that states how

important it is to satisfy customer i compared to all other customers, the maximizing

customers’ satisfaction objective can be described as

1

0 0 1 0
min

S

S

mt mt
i ji ji

tn N M T
t t

i ji ij
i j m t t t

Z S t C tx xC     (3.18)

3.3.4. Maximizing the Balance of the Tours

This objective function seeks to balance the work between vehicles. The idea of making

a multi-objective model that balances the work and minimizes cost has been explored in

the work of Lee and Ueng (1998). Ribeiro et al. (2001) balanced the work by minimizing

the difference between the work of each vehicle and the work of the vehicle with the

lowest work level.

In this model, the work of a single vehicle is defined as the total length the vehicle

traveled in a single day.

The standard deviation of the work of each vehicle at the end of the period is

minimized. The model allows one vehicle to work more than another on a given route, as

long as the total work of a vehicle at the end of the day (t=T) is balanced.

1

0 1 0

S

S

mt mt
ji ji

tN M T
t t

m ji ij
j m t t t

w C x xC     (3.19)
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3.3.5. Minimizing the Arrival Time of the Last Vehicle

The last objective considered in this study is minimizing the arrival time of the last

vehicle. Each vehicle starts its route and ends its route at the depot. While the start time

of each vehicle is known, the end time is unknown and is due to change, mainly because

of the stochastic nature of the travel time.

By  minimizing  the  arrival  time  of  the  last  vehicle,  we  guarantee  two  things:  (1)

Maximum availability of vehicle for unscheduled deliveries and (2) that there are no too

long routes.

0 ,n ,mi : 1mt
iZ M iax t M Tx N m t     (3.20)

3.4. Constraints

3.4.1. Vehicle constraints

There are several constraints related to the vehicles. Every unused vehicle starts at the

depot and returns to the depot. The used vehicles start from the nodes where the vehicles

are located at the time of rerouting. Also vehicles are limited by capacity constraint and

must return to the depot before the end of the day. These constraints are expressed in the

following equations.

Vehicle cannot drive from one node to itself. This constraint if defined by equation

(3.21).

, ,0mt
ii i Mx N m t T     (3.21)

All vehicles start their routes at the depot. This constraint is defined by equation

(3.22).
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Each vehicle, m, is associated with a start time, m
st , equal to the latest time vehicle m

left the depot. Mathematically, m
St  can be defined as max 0,..., S

m
St t t  which

satisfies 0
0

1
N

mt
j

j
x , and there is no 0,. .,ˆ . St t , such that t̂ t  and ˆ

0
0

1
N

mt
j

j
x . If

such m
St  does not exist, then m

S St t .

Each vehicle m can belong to one of the following states: (1) it has never been

assigned to any route, (2) it has been assigned to one route or more in the past and is

currently waiting at the depot and (3) it is currently assigned to a route. If vehicle m

has never been assigned to a route, and is therefore waiting at the depot, then m
S St t ,

and therefore
1

0
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0
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tN
mt

j
j t t

x  and 0
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x  as well.

If vehicle m is assigned to a route, then there are two options. First, vehicle m left the

depot before St  ( m
S St t  ). In this case,
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x  and 0
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x . Second,

vehicle m left  the  depot  at St  or  later  ( m
S St t  ).  In  this  case,
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From the  above  we can  conclude,  that  in  any  case  the  sum
1

0 0
1

S

m
SS

tN T
mt mt
j j

j t tt t

x x  is

either 0 or 1.

All vehicles end their routes at the depot. This constraint is defined by equation (3.23)

.
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As defined in equation (3.22), each vehicle m can either be assigned to a route or not.

If vehicle m is assigned to a route then the term
1

0 0
1

S

m
SS

tN T
mt mt

j j
j t tt t

x x  is equal to 1,

otherwise  it  is  equal  to  0.  For  a  vehicle m that is not assigned to a route, the term

0
1 S

N T
mt

i
i t t

x  is equal to 0. However, for a vehicle m that is assigned to a route, the term

0
1 S

N T
mt

i
i t t

x  is equal to 1 if the vehicle ends its route at the depot, and 0 otherwise. By

defining that
1
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m
S SS

tN T N T
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j j i
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x x x for every vehicle m, we ensure that

every route which starts at the depot also ends at the depot.

3.4.2. Demand Constraints

The demand constraints ensure that only one visit is made to each demand node by only

one vehicle.

All customers require a visit, are visited exactly once, while all other customers are

not visited. This constraint is defined by equations (3.24) and (3.25).
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Constraint (3.24) states that every customer, who's demand at time St  is higher than 0,

is visited by a vehicle arriving from either the depot (i=0) or another customer

( , 0i N i ).

Let t
iv denote whether customer i requires a visit at time t, when 1t

iv  states that

customer i requires a visit at time t, and 0t
iv  states that he/she doesn't. The value of

t
iv  is implied from the total demand of customer i at time t, t

iD . t
jD , the total demand

of demand node j is defined as the sum of all demands made by customer j from time

0t  to time St t ,
0

St
t
j

t
d , minus all demands made by customer j that have been

served before time St t ,
1

0 1 0

StN N
t mt
j ij

i j t
d x . If t

jD  is equal to 0, then t
iv  is 0, otherwise

t
iv  is 1.

Similarly, constraint (3.25) states that a vehicle serving customer i, must continue to

either the depot (j=0) or another customer ( , 0j N j ).

A demand constraint (constraint (3.26)) is also added. This constraint states that the

total demand of all customers visited by the same vehicle must be less than or equal

to the capacity of the vehicle.
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Q m Md x     (3.26)

3.4.3. Routing Constraints

If node j is visited after visiting node i, then the departure time, t, from node j is equal

to or greater than the departure time from node i plus the travel time from node i to

node j at time t. This is described by constraint (3.27).
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A vehicle, visiting node i, that leaves node p and a vehicle visiting node p, that leaves

to node j, is the same vehicle. This constraint (3.28) is a route continuity constraint.

1 1
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m m
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i t t j t tt t t t

m M p N px x x x     (3.28)

If node j is visited after visiting node i, then the departure time, t, from node j is equal

to or greater than the departure time from node i plus the travel time from node i to

node j at time t. This is described by constraint (3.29).
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3.5. The Real-Time Multi-Objective VRP Mix LP Model

The travel time cost function, t
ijC , is stochastic in nature, meaning that it may vary from

one day to another. Therefore, the cost function, t
ijC , is associated with a mean, t

ijC ,

which describes the average travel time from customer i to customer j at time t and  a

standard deviation, t
ijC , which shows how much variation there is from the mean. As

an  estimation  of t
ijC  the mean t

ijC  can be used. However, for a route based on this

estimation, the total travel time of the route will not reflect the possibility of arriving at a

customer earlier or later than expected, and the changes in travel time it may cause. For

that reason, a different estimation of the stochastic cost function, t
ijC , is suggested. Let

t  be an impact factor, which defines how much the value of t
ijC  is affected by

possible changes in travel time (compared to the mean) in previous and future time
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intervals, and is defined as
'

''
max

t
ij

tt t
ij

c
t t

c
. The estimation of the stochastic cost

function, ˆ t
ijC , is defined as ˆ

ˆ

1ˆ
2 1

t t
t t
ij ij

t t t

C C
t

. In this definition ˆ t
ijC  equals to

an average of expected values of t
ijC , thereby taking into consideration the possibility of

being early or late. Based on this definition, the objective functions are:

Based  on  the  notation  of ˆ t
ijC , the formulation, objectives and constraints presented

above, the real-time multi-objective VRP can be defined as the following mixed integer

linear programming module.

The objective of the mixed integer linear programming are:
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and the constraints are:
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Constraint (3.44) is a chance constraint stating that we are looking for a set of routes, that

for a given probability, , the traveling time will not be higher than *c . A method for the

determination of the value of *c  is described next in this chapter.

3.6. Summary

This chapter describes the formulation of the real-time multi-objective vehicle routing

problem stated in chapter 1. The problem is formulated as a mixed integer linear

programming problem on a network.

Several assumptions and limitations are considered, such as a system with dynamic

conditions (real-time variation in travel times and real-time service requests), all demands

have specified service times and service time intervals, soft time windows for service

around the desired service time are considered, and more.

Five objectives functions are described and formulated:

1. Minimizing the total travel time

2. Minimizing number of vehicles - in the real world, since the fixed cost of using

additional vehicles is higher than the routing operation costs, we can reduce the total

cost by minimizing the number of vehicles in service.

3. Maximizing customers' satisfaction – In VRPTW with soft time windows, time

windows may sometimes be violated. However, there exist certain bounds on the

violation that a customer can endure. Each customer can be assigned with a

customer’s satisfaction function, which can describe his/her satisfaction vs. the

deviation from his time window.

4. Maximizing the balance of the tours - This objective function seeks to balance the

work between vehicles by minimizing the difference between the work of each

vehicle and the work of the vehicle with the lowest work level.

5. Minimizing  the  arrival  time  of  the  last  vehicle  -  Each  vehicle  starts  its  route  and

ends its route at the depot. While the start time of each vehicle is known, the end

time is unknown and is subject to changes, mainly because of the stochastic nature
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of the travel time. By minimizing the arrival time of the last vehicle, we guarantee

two things: (1) Maximum availability of vehicles for unscheduled deliveries and (2)

that there are no ‘too long’ routes.

The various constraints applied to this problem are also described and formulated as

well:

1. Vehicle cannot drive from one node to itself.

2. All vehicles start their routes at the depot.

3. All vehicles end their routes at the depot.

4. All customers require a visit, are visited exactly once, while all other customers are

not visited.

5. The total demand of all customers visited by the same vehicle must be less than or

equal to the capacity of the vehicle.

6. If node j is visited after visiting node i, then the departure time, t, from node j is

equal to or greater than the departure time from node i plus  the  travel  time  from

node i to node j at time t.

7. A vehicle, visiting node i, that leaves for node p and a vehicle visiting node p, that

leaves for node j, is the same vehicle.

8. If node j is visited after visiting node i, then the departure time, t, from node j is

equal to or greater than the departure time from node i plus  the  travel  time  from

node i to node j at time t.
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4. Coping with Dynamic VRP
In many real-life applications relevant data changes during the execution of

transportation processes and schedules have to be updated dynamically. Thanks to recent

advances in information and communication technologies, vehicle fleets can now be

managed in real-time. When jointly used, devices like geographic information systems

(GIS), global positioning systems (GPS), traffic flow sensors and cellular phones are able

to provide real-time data, such as current vehicle locations, new customer requests, and

periodic estimates of road travel times. If suitably processed, this large amount of data

can be used to reduce the cost and improve the service level of a modern company. To

this end, revised routes have to be timely generated as soon as new events occur (Ghiani

et al., 2003).

In this context, Dynamic Vehicle Routing Problems (DVRPs), also known as on-line or

real-time Vehicle Routing Problems, are becoming increasingly important (Hanshar &

Ombuki-Berman, 2007; Housroum, Hsu, Dupas & Goncalves, 2006; Montemanni,

Gambardella, Rizzoli & Donati, 2005; Psaraftis, 1995). It is possible to define several

dynamic features which introduce dynamism into the classical VRP: roads between two

customers could be blocked off, customers could modify their orders, the travel time for

some routes could be increased due to bad weather conditions, etc. This implies that

Dynamic VRPs constitute in fact a set of different problems, which are of crucial

importance in today’s industry, accounting for a significant portion of many distribution

and transportation systems.

The main goal of this chapter is to present the problem of DVRP and methods from the

literature for its resolution.

4.1. Dynamic vs. Static Planning
This section discusses the main differences between dynamic and static vehicle routing.

Although some of the issues discussed apply to dynamic and static planning, their impact

on dynamic planning is often much more severe. A comprehensive discussion of dynamic

vehicle routing can be found in (Psaraftis, 1988) and (Psaraftis, 1995). Psaraftis gives the

following definition of a dynamic problem: a problem is dynamic if  information on the
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problem is made known to the decision maker or is updated concurrently with the

determination of the solution. By contrast, if all inputs are received before the

determination of the solution and do not change thereafter, the problem is termed static.

4.1.1. Evolution of information

Obviously, the major difference between dynamic and static problems is the evolution

of information. In static problems information is assumed to be known for the entire

duration of the transportation process. In dynamic problems, however, some input is not

known at the time of planning, and some input is not known with certainty. For example,

traffic conditions change, the number of vehicles available may change due to vehicle

break-down, new transportation requests become known, or attributes of transportation

requests may change.

Most of the literature on dynamic vehicle routing only considers one type of

uncertainty: the arrival of a new transportation request. Few works consider problems

with several sources of uncertainty. Among them are the works by Carvalho and Powell

(2000) and Fleischmann et al. (2004), who consider the arrival of new transportation

requests and uncertain travel times.

Another issue in dynamic planning is the reliability of future information. Long-term

information is more likely to change than short-term information. For example, long-term

estimations of travel times can only be based on historical data. In the short-term,

however, actual traffic conditions can be used to estimate travel times. Those short-term

forecasts  allow  a  much  better  estimation  of  what  is  going  to  happen  and  thus  help  in

improving punctuality.

4.1.2. Rolling horizon

In static planning, schedules are generated for a certain finite planning horizon. The

duration of the planning process is bounded by the time between data collection and the

start of transportation processes. Given the input data, a static planning system must be

capable of calculating high quality solutions in the time available for optimization.

In dynamic planning, the planning horizon may not be bounded or even known. In fact,

a typical dynamic planning scenario is that of an open-ended process, going on for an

indefinite period of time. Usually, near-term events are more important than long-term
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events. The consideration of requirements which have to be satisfied long into the future

would not be very wise, because such future information may change anyway. In a

typical rolling horizon framework, only information relevant to planning decisions within

a horizon of a certain length is considered. As time unfolds, parts of the tentative

schedule are applied and new information may enter the planning horizon.

4.1.3. Impreciseness of model representation

Real-life vehicle routing problems usually cannot be precisely represented by an

analytical model which is required for computer-based decision support. Even if the

analytical model is of high quality, discrepancies between model representation and real-

life problems arise as a result of the sheer cost of getting information into the computer.

Telematics systems can be used to improve the timely availability of information

regarding the actual transportation processes. Electronic Data Interchange (EDI) can be

used to integrate information systems of shippers, e.g. to obtain all relevant data

regarding transportation requests and customer locations. Despite the improved

possibilities of getting data into the model, the information is generally not only

incomplete but also imprecise. A shipper, for example, may ask that a shipment be picked

up in the morning before noon, when his dock is not as busy. In the model such

restrictions are usually treated as time window constraints. The computer system has no

way of interpreting whether such a request for early pickup is a hard constraint or

whether the shipper was only trying to express a preference.

The impreciseness of the model representation results in two fundamental problems: (1)

some solutions which are feasible according to the model may not be feasible in reality

and vice versa, (2) a solution with high quality in the model may not have the same high

quality in reality.

Although these problems occur in static as well as in dynamic planning, the impact is

quite different. In static planning there is usually more time for the collection of data,

resulting in a more accurate representation of the real-life problem. Furthermore, there is

more time to manually verify and validate a solution recommended by the planning

system.
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4.1.4. Interactivity

Due to the impreciseness of any model representation and the fact that a significant

amount of relevant information is not available to the computer, but only to the

dispatchers who are in direct contact with drivers and shippers, model recommendations

cannot always be fully implemented. According to Carvalho and Powell (2000), several

motor carriers report that the average usage of model recommendations is below 60%,

and good performance is considered around 70%.

In order to deal with this issue, Kopfer and Schonberger (2002) have presented a

framework for interactive problem solving. The concept is founded on posting a problem

to a planning method in order to let it generate a solution. The returned solution usually

does not satisfy all real-life requirements. Therefore, dispatchers may add, modify, or

remove certain constraints in the analytical model. The modified problem is again posted

to the planning method, and after a solution has been found, further modifications to the

model can be made. Although this approach can be used for static and dynamic problems,

this iterative decision making is much harder in dynamic planning due to the lack of time.

In a similar approach, instead of having an iterative decision making process, a real-

time  decision  support  system  allows  dispatchers  and  dynamic  planning  systems  to

simultaneously modify the current solution. Dispatchers may add, modify, or remove

certain constraints in the analytical model at any time. All changes made by the

dispatchers are directly considered by the dynamic planning system which continuously

searches for improved solutions. Whenever the dynamic planning system finds a better

solution, the current solution is immediately updated and shown to the dispatchers. An

optimistic locking scheme is used in order to maintain data consistency.

Humans use a form of cache memory for processing information, called working

memory. This working memory must be regularly updated in order to consider changes in

problem data and solution. A dynamic planning system must support dispatchers in

quickly updating their working memory. Therefore, besides providing algorithmic

optimization techniques, a dynamic planning system must also provide sophisticated

graphical user interfaces (GUI), allowing dispatchers to quickly identify modified parts of

the solution, and to efficiently verify feasibility and profitability of an automatically

generated schedule.
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4.1.5. Response time

The response time of an algorithm is the time which is needed until a newly calculated

solution can be applied. Algorithms for dynamic planning must have fast response times

for two reasons. First, a solution calculated for a dynamic problem can only be applied if

the input data have not changed significantly during the planning process. Second, the

longer it takes to calculate a new solution, the higher the probability that dispatchers may

concurrently change the current solution.

In many cases dispatchers have to decide about load acceptance or rejection while the

shipper is on the phone making the request. Dynamic planning systems should be capable

of supporting dispatchers in the load acceptance decision while the shipper is on the

phone. In other words, the system should give support within a couple of seconds in

deciding whether a transportation request can be served feasibly and efficiently.

The main advantage in dynamic planning is that there is usually plenty of time for

optimization. As noted by Kilby, Prosser and Shaw (1998), ten minutes spent to find a

solution for a small problem may seem like a long time in the static case. In the dynamic

case, however, ‘one has all day’, so the time might as well be used. A dynamic planning

system can be used to successively improve the current solution. Obviously, fast response

times cannot be achieved if new solutions are calculated from scratch every time the

dynamic planning method is invoked. Therefore, a dynamic planning system should have

a restart capability, i.e. the planning system should be able to continue from the current

solution. Furthermore, dynamic planning methods require efficient information update

mechanisms in order to efficiently consider modified input data.

4.1.6. Measuring performance

Measuring performance in dynamic planning is much more complicated than in static

planning. A method for static planning can be evaluated by comparing the solution

obtained with solutions obtained by other methods. In dynamic planning, however, the

decisions made at one point in time determine the options and alternatives at a later point

in time. It is possible to compare alternative decisions at one point in time, but then

carrying the effects of those decisions forward in time creates a problem.
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In dynamic planning with rolling horizons, any evaluation of operating efficiencies

must address the issue of time period evaluation. The state of the system at the end of the

evaluation period may have a dramatic impact on future performance. A dynamic

planning method may perform quite well over a day or a week, but can have poor long-

term performance, e.g. if all vehicles are sent to very distant regions where there is little

hope of picking up a new load.

As mentioned above, dynamic planning methods must be interactive, enabling

dispatchers to verify model recommendations. In many cases dispatchers will agree with

model recommendations. However, differing problem knowledge and solution methods

of computer vs. human dispatchers may result in contradictory decisions. Under the time

constraints in dynamic planning, it is often very difficult or even impossible to find out

why the recommendation is being made. Is the discrepancy a result of “higher reasoning”

or a simple data error ? Typically, dispatchers will follow their own intuition and not the

model recommendation. As noted by Powell W.B., Marar, Gelfand and Bowers (2002), a

dynamic planning system is often considered successful if dispatchers agree with model

recommendations, but dispatchers often do not follow model recommendations.

Obviously,  the  question  arises  that  if  dispatchers  do  not  comply  with  model

recommendations, are the solutions produced any good at all ?

4.2. DVRP Interests

There are several important problems that must be solved in real-time. In (Gendreau &

Potvin, 1998), (Larsen, 2000) and (Ghiani et al., 2003), the authors list a number of real-

life applications that motivate the research in the domain of dynamic vehicle routing

problems.

Supply and distribution companies: In seller-managed systems, distribution

companies estimate customer inventory levels in such a way as to replenish them

before stock depletion. Hence, demands are known beforehand in principle and all

customers are static. However, because demand is uncertain, some customers might

run out of their stock and have to be serviced urgently.

Courier Services: This refers to the international express mail services that must

respond to customer requests in real-time. The load is collected at different customer
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locations and has to be delivered at another location. The package to be delivered is

brought back to a remote terminal for further processing and shipping. The deliveries

form a static routing problem, since recipients are known by the driver. However,

most pickup requests are dynamic because neither the driver nor the planner knows

where the pickups are going to take place.

Rescue and repair service companies: Repair services usually involve a utility firm

(broken car rescue, electricity, gas, water and sewer, etc.) that responds to customer

requests for maintenance or repair of its facilities.

Dial-a-ride systems: Dial-a-ride systems are mostly found in demand-responsive

transportation  systems  aimed  at  servicing  small  communities  or  passengers  with

specific requirements (elderly, disabled). These problems are of the many-to-many

when any node can serve as a source or destination for any commodity or service.

Customers can book a trip one day in advance (static customers) or make a request at

short notice (dynamic customers).

Emergency services: These includes the police, firefighting and ambulance services.

By  definition,  the  problem  is  purely  dynamic,  since  all  customers  are  unknown

beforehand and arrive in real-time. In most situations, routes are not formed because

the requests are usually served before a new request appears. The problem then is to

assign the best vehicle (for instance the nearest) to the new request. Solving methods

are based on location analysis for deciding where to dispatch the emergency vehicles

or to escape the downtown traffic jam.

Taxicab services: Managing taxicabs is still another example of a real-life dynamic

routing problem. In most taxicab systems the percentage of dynamic customers is

very high, i.e., only a very few customers are known by the planner before the taxicab

leaves the central station at the beginning of its working day.

4.3. Related Works

In this section, we present a classification and an overview on the state-of-the-art of

dynamic vehicle routing problems. Naturally, this chapter cannot cover all aspects of

vehicle routing problems with dynamic or stochastic elements. The goal of this chapter is

rather to provide a brief introduction to the literature on these subjects. Also, this chapter
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is meant to provide the reader with an overview of the methodological approaches to

these problems.

Different surveys have been proposed on DVRPs (Bianchi & Bianchi-idsia, 2000;

Ghiani et al., 2003; Moretti Branchini, Amaral Armentano & Løkketangen, 2009).

Psaraftis (1988, 1995) was among the first to study dynamic versions of the VRP.

Psaraftis defines that a vehicle routing problem is dynamic when some inputs to the

problem are revealed during the execution of the algorithm. Demand information is not

known when vehicles are assigned, and demand information is revealed on-line. Problem

solution evolves as inputs are revealed to the algorithm and to the decision maker.

Possible information attributes might include evolution of information (static/dynamic),

quality of information (known-deterministic/forecast/probabilistic/unknown), availability

of information (local/global), and processing of information (centralized/decentralized).

Powell W. B. et al. (1995) concentrate on stochastic programming based models, but

also provide an excellent survey on various dynamic vehicle routing problems. For

example, the dynamic traffic assignment problem consists of finding the optimal routing

of some goods from origin to their destination through a network of links which could

have time-dependent capacities. The authors also discuss how to evaluate the solutions,

since it is an important issue that distinguishes static from dynamic models. They note

that in static models finding an appropriate objective function is fairly easy and that the

objective function is usually a good measure for evaluating the solution. However, for

dynamic models the objective function used to find the solution over a rolling horizon

often  has  little  to  do  with  the  measures  developed  to  evaluate  the  overall  quality  of  a

solution.

Bertsimas  DJ  and  Simchi-Levi  (1996)  provide  a  survey  of  deterministic  and  static  as

well as dynamic and stochastic vehicle routing problems for which they examine the

robustness and the asymptotic behavior of the known algorithms. Bertsimas and Simchi-

Levi argue that analytical analysis of the vehicle routing problem offers new insights into

the algorithmic structure, making performance analysis of classical algorithms possible

and leading to a better understanding of models that integrate vehicle routing with other

issues like inventory control. The authors conclude that a-priori optimization is an

attractive policy if intensive computational power is not present. Furthermore, they point

out that dealing with stochasticity in the VRP provides insights that can be useful when
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constructing practical algorithms for the VRP within a dynamic and stochastic

environment.

Gendreau and Potvin (1998) note that the work on local area vehicle routing and

dispatching still leaves a number of questions to be answered. In particular, research on

demand forecasting used for constructing routes with look-ahead is needed in the future.

Furthermore, the authors point out that it is relevant to consider several sources of

uncertainty like cancellation of requests and service delays rather than just to focus on

uncertainty in the time-space occurrence of service requests. Gendreau and Potvin also

note that the issue of diversion deserves more attention. Due to the large amount of online

information it has become possible to redirect the vehicle while on-route to the new

customer. Finally, the authors advocate further research on parallel implementations and

worst-case analysis, in order to be able to assess the loss in not having full information

available at the time of planning.

The following is a classification of DVRPs according to the degree of knowledge that

we have on the input data of the problem and quality of the available information. A

dynamic problem can be either deterministic or stochastic. DVRP is deterministic if all

data related to the customers are known when the customer demands arrive; otherwise it

is stochastic. Both of these classes can be subject to different factors such as service time

window, traffic jam, road maintenance, weather changes, breakdown of vehicles and so

on. These factors often change the speed of vehicles and the travel time for arriving at the

depot.

1. Deterministic: In a deterministic case, all the data related to the inputs are known.

For instance, when a new customer demand appears, customer location and the

quantity  of  his  demand  are  known.  Different  types  of  deterministic  DVRP  can  be

found in the literature as:

a. Dynamic Capacitated Vehicle Routing Problem (DCVRP): An important

number of works exist on this variant (Gendreau et al., 1999; Kilby et al., 1998;

Montemanni et al., 2005) which represents the conventional definition of the

problem, and where the existence of all customers and their localizations are

deterministic, but their order can arrive at any time. The objective is to find a set
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of routes with the lowest traveled distance, and with respect to vehicle capacity

limit.

The  Dynamic  Traveling  Repairman  Problem  (DTRP)  (Bertsimas  D.J.  &  Van

Ryzin, 1991, 1993) belongs to this class of problems. It is described as a problem

in which demands arrive according to Poisson process in a Euclidean service

region, and their locations are distributed throughout the service region. The goal

is  to  minimize  the  expected  time that  the  demand spends  in  the  system (i.e.  the

average time a customer must wait before his/her request is completed), as

opposed to the expected distance that the vehicle travels. The service times of

requests are not known to the dispatcher, until the service at the respective

customers is completed.

Where all demands are dynamic in DTRP, i.e. all customers are immediate

request customers. Larsen, Madsen and Solomon (2002) define the Partially

Dynamic Traveling Repairman Problem (PDTRP) that is a variant of this problem

involving both advance and immediate request customers. Furthermore, the

problem seeks to optimize different objective functions. The dispatcher is more

interested in minimizing the distance traveled by the repairman than in

minimizing the overall system time.

b. Dynamic Vehicle Routing Problem with Time Windows (DVRPTW): It is one

of the most well-studied variants of DVRP (Alvarenga, de Abreu Silva & Mateus,

2005; Fabri & Recht, 2006; Housroum et al., 2006; Larsen, Madsen & Solomon,

2004; Mitrovi -Mini , Krishnamurti & Laporte, 2004; Oliveira, de Souza & Silva,

2008; Wang J., Tong & Li, 2007). Besides the possibility of requiring services in

real time, the time window associated with each customer i follows a specific

interval time ,i ia b , that must be satisfied. Larsen et al. (2002) proposed on-line

policies for the Partially Dynamic Traveling Salesman Problem with Time

Windows (PDTSPTW) that could be considered as an instance of DVRPTW with

a single vehicle. The objective is to minimize lateness at customer locations. A

simple policy of requiring the vehicle to wait at the current customer location

until it can service another customer without being early. Other policies may
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suggest repositioning the vehicle at a location different from that of the current

customer, based on prior information on future requests.

c. Dynamic Vehicle Routing Problem with time-dependent Travel Times

(DVRPTT): Described in (Haghani & Jung, 2005), it assumes that the travel time

from customer i to customer j is variable across time. This variation could occur

due to the type of the road, weather and traffic conditions that may strongly

influence the speed of vehicles and hence travel times.

d. Dynamic Pickup and Delivery Vehicle Routing Problem (DPDVRP): Based

on the conventional Pickup and Delivery Vehicle Routing Problem (PDVRP)

(Savelsbergh M. W. P. & Sol, 1995). The problem consists of determining a set of

optimal routes for a fleet of vehicles in order to serve transportation requests

(Mitrovi -Mini  et al., 2004). The objective is to minimize total route length, i.e.,

the sum of the distances traveled by all the vehicles, under the following

constraints: all requests must be served, each request must be served entirely by

one vehicle (pairing constraint), and each pickup location has to be served before

its corresponding delivery location (precedence constraint). The dynamic version

arises when not all requests are known in advance. Swihart and Papastavrou

(1999) have introduced a new variant of the DTRP where each service request has

a pickup and a delivery location. The objective is to minimize the expected

system time. The authors consider the unit-capacity case where the vehicle can

carry no more than one item, as well as the case where the vehicle can carry an

arbitrarily large number of items. Attanasio, Cordeau, Ghiani and Laporte (2004)

present a parallel implementation of a tabu search method developed previously

by Cordeau and Laporte (2003) for the Dynamic Dial-a-Ride Problem (DDARP).

In the latter, requests are received throughout the day and the primary objective is

to accommodate as many requests as possible according to the available fleet of

vehicles. Furthermore, the routes are designed under the constraint that customers

specify pick-up and drop-off requests between origins and destinations. Yang,

Jaillet and Mahmassani (2004) introduce a real-time multi-vehicle truck-load

pickup and delivery problem. They propose a mixed-integer programming
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formulation for the off-line  version  of  the  problem  and  propose  a  new  rolling

horizon re-optimization strategy for a dynamic version.

2. Stochastic: In stochastic dynamic problems (also known as probabilistic dynamic

problems) uncertain data are related to customer locations, demands or travel times

and are represented by stochastic processes.

a. Dynamic and Stochastic Capacitated Vehicle Routing Problem (DSCVRP): It

considers the situation where customer requests are unknown and revealed over

time. In addition, customer locations and service times are random variables and

are realized dynamically during plan execution. Bent and Van Hentenryck (2004)

considered DVRP with stochastic customers. They proposed a multiple scenario

approach that continuously generates routing plans for scenarios including known

and immediate requests to maximize the number of serviced customers. The

approach was adapted from Solomon benchmarks, with a varying degree of

dynamism. Hvattum, Løkketangen and Laporte (2006) addressed this variant of

the problem. The authors assume that both customer locations and demands may

be unknown in advance. They formulate the problem as a multi-stage stochastic

programming problem, and a heuristic method was developed to generate routes

by exploiting the information gathered on future customer demand.

b. Dynamic and Stochastic Vehicle Routing Problem with Time Windows

(DSVRPTW): Proposed by Pavone, Bisnik, Frazzoli and Isler (2009), in this

problem, each service request is generated according to a stochastic process; once

a service request appears, it remains active for a certain deterministic amount of

time,  and  then  expires.  The  objective  is  to  minimize  the  number  of  possible

vehicles and ensure that each demand is visited before its expiration. Furthermore,

this problem has been considered by Bent and Van Hentenryck (2007).

c. Dynamic Vehicle Routing Problem with Stochastic Travel Times

(DVRPSTT):  It  assumes  that  the  problem  is  subject  to  a  stochastic  travel  time

which represents a random variable in an interval. The travel times change from

one  period  to  the  next.  Some  works  present  this  version  of  the  problem  as  in

(Potvin, Xu & Benyahia, 2006), where the travel time to the next destination is

perturbed by adding a value generated with a normal probability law. This
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perturbation represents any unforeseen events that may occur along the current

travel journey. It is known to the dispatching system only when the vehicle arrives

at its planned destination.

d. Dynamic and Stochastic Pickup and Delivery Vehicle Routing Problem

(DSPDVRP): In this version of the problem a stochastic process concerns the

quantity of demand that the vehicle must pick up or delivery to each customer.

Thus, we have vagueness in quantities to pick up or deliver at the customer’s

location (Xu, Goncalves & Hsu, 2008). The demand of each customer is revealed

only when the vehicle reaches the customer. The distribution can be modeled by

using a probabilistic law, such as a normal law, for example, or by using fuzzy

logic.

4.4. Solution Methods
This section gives an overview of algorithms for solving vehicle routing problems,

based on solution methods which can be used for rich problems in which problem data

may change dynamically. The solution methods discussed in this section can be

categorized into assignment methods, construction methods, improvement methods,

meta-heuristics and mathematical programming based methods.

4.4.1. Assignment Methods

Assignment methods are methods that assign transportation requests to vehicles for

immediate execution. They are used in highly dynamic problems where problem data

change very fast and no foresighted planning is likely to perform well. Assignment

algorithms that simultaneously assign several open orders to idle vehicles are studied by

Spivey and Powell (2004) and Fleischmann et al. (2004).

4.4.2. Construction Methods

Construction methods gradually build tours while keeping an eye on the objective

function value, but they do not contain an improvement phase (Laporte & Semet, 2002).

A comprehensive survey on construction methods for the VRPTW is given by Bräysy

and Gendreau (2005b). One of the best-known tour construction methods for the VRP is

the Savings algorithm by Clarke and Wright (1964).
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Insertion methods are methods that successively insert open transportation requests into

partially constructed tours. They are well suited for dynamic planning, because they

permit incorporation of a new order that considers the set of tours which are currently

implemented. Insertion methods are very fast and can be used for dynamic vehicle

routing problems in which there may not be enough time to employ more sophisticated

methods. Furthermore, insertion methods can often be applied to problems incorporating

various real-life requirements without losing efficiency. A discussion of efficient

insertion methods for vehicle routing problems incorporating complicating constraints

can be found in (Campbell & Savelsbergh, 2004).

Early examples of insertion methods have been proposed by Solomon (1987) for the

VRPTW. Parallel insertion methods for the static VRPTW which simultaneously

constructs several tours via insertions are proposed by Potvin and Rousseau (1993) and

Antes and Derigs (1995). Recently Lu and Dessouky (2006) presented an insertion

method for the PDPTW which not only considers the classical incremental costs, but also

the cost of reducing the time window slack so that more opportunities are left for future

insertions. Insertion methods for the dynamic PDP are also studied by Mitrovic-Minic,

Adviser-Krishnamurti and Adviser-Laporte (2001) and Fleischmann et al. (2004).

4.4.3. Improvement Methods

Many solution techniques for combinatorial optimization problems are based on a

simple and general idea. Let s be a feasible solution of the problem considered and let f(s)

denote the objective function value of s. For each feasible solution s the neighborhood of

s is defined by the solutions s* which can be obtained by applying an appropriately

defined neighborhood operator to the solution s. So-called local search or neighborhood

search methods explore the neighborhood of the current solution s by searching for a

feasible solution s* of high quality in the neighborhood of the current solution s. This

solution may be accepted as a new current solution, and in this case, the process is

iterated by considering s* as a new current solution.

In maximization (minimization) problems, a new solution s* is typically only accepted

if ( *) ( )f s f s  ( ( *) ( )f s f s )  .  If  no  solution s* with ( *) ( )f s f s  ( ( *) ( )f s f s )

exists in the neighborhood of s, a local optimum has been reached. A comprehensive
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work on local search methods is given by Aarts and Lenstra (1997). A survey and

comparison of local search methods for the VRPTW has been presented by Bräysy and

Gendreau (2005a).

Improvement methods are local search methods which start with a feasible solution and

gradually modify the current solution in order to improve the solution quality. The most

simple improvement methods operate on a single tour and optimize the sequence in

which the locations are visited. They are often based on methods developed for the TSP,

e.g. 2-opt by Lin (1965) and Or-opt by Or (1976). Others consider several tours

simultaneously, e.g. the operators relocate, exchange, and cross originally proposed by

Salesbergh (1992) for the classical VRP. Local optima produced by an improvement

method can be very far from the optimal solution, as they only accept solutions that

produce an improvement in the objective function value. Thus, the outcome depends

heavily on the initial solution and the neighborhood definition.

4.4.4. Meta-heuristics

Meta-heuristics are general solution procedures that often embed some of the standard

tour construction and improvement methods, as well as techniques to escape from local

optima of low quality (Cordeau, Gendreau, Laporte, Potvin & Semet, 2002). A

comprehensive survey on the use of meta-heuristics for the VRPTW is given by Bräysy

and Gendreau (2005b). Examples of meta-heuristics are Simulated Annealing, Genetic

Algorithms, Ant Systems, Tabu Search, and Iterated Local Search (Blum & Roli, 2003).

The fundamental idea of Simulating Annealing is to allow moves resulting in solutions

of worse quality in order to escape from locally optimal solutions (Kirkpatrick et al.,

1983). The probability of doing such a move is decreased during the search. Although

successful for many static problems, it is not clear how to effectively change this

probability in dynamic problems, as input data may change during the search.

Genetic Algorithms, Ant Systems, and Tabu Search are memory-based methods

classified as Adaptive Memory Programming (AMP) methods by Taillard É. D.,

Gambardella, Gendreau and Potvin (1998). Particularly in highly dynamic problems,

AMP methods require methods to efficiently update the memory. The memory can only

be used effectively if there are only minor changes to the problem data. Examples of

AMP methods are the Genetic Algorithm for the dynamic PDP presented by Pankratz
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(2004), an Ant Colony System for the dynamic VRP by Montemanni et al. (2003), the

Tabu Search algorithm for the dynamic VRP by Gendreau et al. (1999), and the Tabu

Search algorithms for the dynamic PDP by Gendreau and Potvin (1998) and Mitrovic-

Minic et al. (2001).

The essence of Iterated Local Search (ILS) is to iteratively build a sequence of solutions

generated by an embedded heuristic. It applies the heuristic until it finds a local optimum.

Then it perturbs the solution and restarts the heuristic. This generally leads to far better

solutions than if one would use repeated random trials of that heuristic (Lourenço, 2002).

Variable Neighborhood Search (VNS) can be interpreted as a specialized ILS based on

the idea of systematically changing the neighborhood structure during the search (Hansen

P. & Mladenovi , 2003; Mladenovi  & Hansen, 1997). VNS systematically exploits the

following observations: (1) a local optimum with respect to one neighborhood structure is

not necessarily so for another; (2) a global optimum is a local optimum with respect to all

possible neighborhood structures; (3) for many problems local optima with respect to one

or several neighborhoods are relatively close to each other. An example of a VNS

algorithm for vehicle routing problems is the algorithm for the multi-depot VRPTW

presented by Polacek, Hartl, Doerner and Reimann (2004).

As noted by Ahuja, Ergun, Orlin and Punnen (2002), a critical issue in the design of a

neighborhood search approach is the size of the chosen neighborhood. Large

neighborhoods increase the quality of the locally optimal solutions; however, locally

optimal solutions are difficult to find in very large neighborhoods. In each iteration of the

Large Neighborhood Search (LNS) algorithm presented by Shaw (1997) for the VRPTW,

k customers  are  first  removed  from  their  tours  and  then  re-inserted  using  a  branch  and

bound procedure. Schrimpf, Schneider, Stamm-Wilbrandt and Dueck (2000) and Ropke

and Pisinger (2006) present similar LNS algorithms using fast insertion heuristics for the

re-insertion of transportation requests. The use of fast insertion heuristics is more

appropriate for dynamic planning, as fast response times can be easily achieved. The LNS

approach is very well suited for highly constrained vehicle routing problems and rich

vehicle routing problems in which data may change dynamically.
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4.4.5. Mathematical Programming Based Methods

Finding optimal solutions for vehicle routing problems is generally too time consuming,

particularly in dynamic planning. However, mathematical programming based methods

can be used in dynamic vehicle routing if the number of decision variables is reduced

dramatically or sub-problems are only solved approximately.

Mathematical programming based methods for the dynamic Full-Truckload PDP have

been presented by Yang et al. (2004). To guarantee robustness and time-lines of the

methods, the number of transportation requests involved in each optimization was limited

to a fixed upper-bound. Thus, the resulting mathematical program is significantly reduced

in size and is solved using a branch-and-cut procedure.

The most popular mathematical programming based methods for rich vehicle routing

problems is the Column Generation approach. Column Generation has been applied to the

VRPTW by Desrochers et al. (1992), the HFVRP by Taillard É. D. (1996), the PDP by

Dumas, Desrosiers and Soumis (1991), a generalized PDP by Savelsbergh M. and Sol

(1998). Column Generation approaches for dynamic vehicle routing problems have been

presented by Savelsbergh M. and Sol (1998) and more recently by Potvin et al. (2006).

4.5. Summary

In many real-life applications relevant data change during the execution of

transportation processes and schedules have to be updated dynamically. Thanks to recent

advances in information and communication technologies, vehicle fleets can now be

managed in real-time. In this context, Dynamic Vehicle Routing Problems (DVRPs), also

known as on-line or real-time Vehicle Routing Problems, are becoming increasingly

important.

There are several differences between static and dynamic vehicle routing problems.

Obviously, the major difference is the evolution of information. In static problems

information is assumed to be known for the entire duration of the transportation process.

In dynamic problems, however, some input is not known at the time of planning, and

some input is not known with certainty. In static planning, schedules are generated for a

certain finite planning horizon, while in dynamic planning, the planning horizon may

neither be bounded, nor known.
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The  response  time  of  an  algorithm,  which  is  the  time  which  is  needed  until  a  newly

calculated solution can be applied, must be fast for two reasons: (1) a solution calculated

for a dynamic problem can only be applied if the input data have not changed

significantly during the planning process, and (2) the longer it takes to calculate a new

solution the higher the probability that dispatchers concurrently change the current

solution.

Several dynamic VRPs have been reviewed, which include the Dynamic Capacitated

VRP,  Dynamic  VRP  with  Time  Windows,  Dynamic  VRP  with  time-dependent  Travel

Times, Dynamic Pickup and Delivery VRP, Dynamic and Stochastic Capacitated VRP,

Dynamic and Stochastic VRP with Time Windows, Dynamic VRP with Stochastic Travel

Times and Dynamic and Stochastic Pickup and Delivery VRP.

Next, the various solution methods, including heuristics and meta-heuristics methods

were reviewed.
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5. Solving Multi-Objective Optimization Problems
Real-world problems often have multiple conflicting objectives. For example, when

purchasing computing equipment, we would usually like to have a high-performance

system, but we also want to spend less money buying it. Obviously, in these problems,

there is no single, best solution when measured on all objectives. These problems are

examples of a special class of optimization problems called multi-objective optimization

problems (MOPs).

In single objective problems, an optimum solution is a solution for which the criterion

value is maximized (or minimized) when compared to any other alternative in the set of

all feasible alternatives. In multi-objective problems, the notion of an “optimum solution”

does not usually exist in the context of conflicting, multiple objectives. In general, it is

called a Pareto optimal solution if no other feasible solution exists that would decrease

some objectives (suppose a minimization problem) without causing a simultaneous

increase in at least one other objective (Coello C. A. C., 2006).

With this definition of optimality, we usually find several trade-off solutions (called the

Pareto optimal set or Pareto optimal front (POF)). In that sense, the search for an optimal

solution has fundamentally changed from what we see in the case of single-objective

problems. The task of solving MOPs is called multi-objective optimization.

However, practically speaking, users need only one solution from the set of optimal

trade-off  solutions.  Therefore,  solving  MOPs  can  be  seen  as  the  combination  of  both

searching and decision-making (Horn, 1997). In order to support this, there are four main

approaches in the literature (Miettinen, 1999).

1. No-preference - These methods solve a problem and give a solution directly to the

decision maker without using preference information.

2. Decision making after search / Posteriori – These methods find all possible solutions

of the non-dominated set and use the user preference to determine the most suitable

one.

3. Decision making before search / Priori – These methods incorporate the use of

preference before the optimization process, and thus will result in only one solution at

the end. With this approach, the bias (from the user preference) is imposed all the

time.
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4. Decision making during search / Interactive – These methods are a hybridization of

the second and third methods, in which human decision making is periodically used

to refine the obtained trade-off solutions and thus to guide the search.

In general, the second method is preferred mostly within the research community since it

is less subjective than the other two.

5.1. Concepts and Notations

This section will define some common concepts that have been widely used in the

literature. Interested readers might refer to (Coello C. A. C., Lamont & Van Veldhuizen,

2007; Deb, 2001; Ehrgott, 2005) or (Miettinen, 1999) for a more detailed description.

Mathematically, in a k-objective optimization problem, a vector function f x  of k

objectives is defined as:

1 2, ,..., nf x f x f x f x       (5.1)

in which x is a vector of decision variables in the n-dimensional space n ; n and k are

not necessarily the same. A solution is assigned a vector x and therefore the

corresponding objective vector, f. Therefore, a general MOP is defined as follows:

min i x D
f x       (5.2)

where 1,2,...,i k  and nD , is called the feasible search region. All solutions

(including optimal solutions) that belong to D are called feasible solutions.

In general, when dealing with MOPs, a solution 1x  is said to dominate solution 2x  if 1x

is better than 2x  when measured on all objectives. If 1x  does not dominate 2x  and 2x  also

does not dominate 1x , they are said to be non-dominated. If we use  between 1x  and 2x

as 21x x  to denote that 1x  dominates 2x  and between two scalars a and b, as a b

to denote that a is better than b (similarly, a b  to denote that a is worse than b, and

a b to denote that a is not worse than b), then the dominance concept is formally

defined as follows.
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Definition 5.1: 21x x  if the following conditions are held:

1. 1 2 1,2,...,jj f x jf x k

2. 1, 2,...,j k  in which 1 2j jf x f x

The concept defined in definition 5.1 is sometimes referred to as weak dominance. For

the strict dominance concept, solution 1x  must be strictly better than 2x  in all objectives.

However, we follow the weak dominance concept as defined in definition 5.1.

Several optimization algorithms, mainly EAs, use a population of individuals during the

optimization process. At the end, we usually have a set of individuals where no single

individual dominates any other in the set. This set is an approximation of the real optimal

solutions for the problem.

In general, if an individual in a population is not dominated by any other individual in

the population, it is called a non-dominated individual. All non-dominated individuals in

a population form the non-dominated set (as formally described in definition 5.2). Note

that these definitions are equivalent to that from (Deb, 2001).

Definition 5.2: A set S is  said  to  be  the  non-dominated  set  of  a  population P if the

following conditions are held:

1. S P

2. , :s S x P x s

When the set P represents the entire search space, the set of non-dominated solutions S

is  called  the global Pareto optimal set. If P represents a subspace, S will  be  called  the

local Pareto optimal set. There is only one global Pareto optimal set, but there could be

multiple local ones. However, in general, we simply refer to the global Pareto optimal set

as the Pareto optimal set. Although there are several conditions established in the

literature for optimality (Ehrgott, 2005; Miettinen, 1999), for practical black-box

optimization problems, these conditions generally cannot be easily verified.
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Finally, we define two special objective vectors (assuming that the problem is

minimization) that are related to the Pareto optimal set (Ehrgott, 2005). For the sake of

simplicity, these vectors are also called “solutions.”

Ideal solution: This represents the lower bound of each objective in the Pareto

optimal set. It can be obtained by optimizing each objective individually in the entire

feasible objective space.

Nadir solution: This contains all the upper bounds of each objective in the Pareto

optimal  set.  Obtaining  the  Nadir  solution  over  the  Pareto  optimal  set  is  not  an  easy

task. One of the common approaches is to estimate the Nadir point by a pay-off table

based on the Ideal solution.

5.2. Traditional Multi-Objective Algorithms
There are many traditional methods (the term “traditional” is used to differentiate such

methods from evolutionary ones), such as the method of global criterion, weighted-sum

(Cohon, 2004; Miettinen, 1999), -constraint (Haimes, Lasdon & Wismer, 1971),

weighted metric (Miettinen, 1999) and goal programming (Steuer, 1986). This section

will only summarize several approaches that represent four different categories.

5.2.1. No-Preference Methods

In no-preference methods, in which user preference is not considered, the decision

maker receives the solution of the optimization process, which he can either accept or

reject. No-preference methods are suitable in the case that the decision maker does not

have specific assumptions on the solution.

As  an  example  we  consider  the global criterion method (Miettinen, 1999; Zeleny,

1982). The global criterion method transforms MOPs into single objective optimization

problems by minimizing the distance between some reference points and the feasible

objective region. In the simplest form, the reference point is the ideal solution and the

problem is represented as follows:

1

*

1

min
pk p

i i
i

f x z       (5.3)
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where z* is the ideal vector, and k is the number of objectives.

From the equation, one can see that the obtained solutions depend very much on the

choice of the p’s value. Also, in the end the method will only give one solution to the

decision maker.

5.2.2. Posteriori Methods

In posteriori methods, the decision maker is given a set of Pareto optimal solutions and

the most suitable one is selected based on the decision maker’s preference. Here, the two

most popular approaches, weighted sum and -constraint, are summarized.

In the weighted-sum method, all the objectives are combined into a single objective by

using a weight vector. The problem in equation (5.2) is now transformed as in equation

(5.4).

1 1 2 2min ... |k kf x w f x w f x Dw f x x       (5.4)

where i = 1, 2, …, k and D n .

The weight vector is usually normalized such that 1iw .

Although the weighted-sum method is simple and easy to use, there are two inherent

problems.  First,  there  is  the  difficulty  of  selecting  the  weights  in  order  to  deal  with

scaling problems since the objectives usually have different magnitudes. Therefore, when

combining them together, it is easy to cause biases when searching for tradeoff solutions.

Secondly, the performance of the method is heavily dependent on the shape of the POF.

Consequently, it cannot find all the optimal solutions for problems that have a non-

convex POF.

To overcome the difficulty of non-convexity, the -constraint method has been

introduced, where only one objective is optimized while the others are transformed as

constraints. The problem in equation (5.2) is now transformed as in equation (5.5). Again,

the problem is now transformed into a single objective one.

min |jf x x D       (5.5)
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subject to ijf x where i=1,2, …,k, i  j and D n .

In this method, the  vector is determined and uses the boundary (upper bound in the

case of minimization) for all objectives i. For a given vector, this method will find an

optimal solution by optimizing objective j. By changing , we will obtain a set of optimal

solutions. Although this method alleviates the difficulty of non-convexity, it still has to

face the problem of selecting appropriate values for the vector, since it can happen that

for a given vector, no feasible solution exists.

5.2.3. Priori Methods

In priori methods, the decision maker must indicate the assumption about the

preferences before the optimization process. Therefore, the issue is how to quantify the

preference and incorporate it into the problem before the optimization process.

One obvious method is the weighted-sum method, described in the previous section,

where the weights can be used to represent the decision maker’s preference.

We also consider the lexicographic ordering and goal programming (Fishburn, 1974;

Ignizio, 1983; Miettinen, 1999) as examples of priori preference methods.

When using the lexicographic method, the decision maker is asked to arrange the

objective functions by their importance. The optimization process is performed

individually on each objective following the order of importance, when the result of each

optimization process is used as constraints for the next process.

When using goal programming, aspiration levels of the objective functions have to be

specified by the decision maker. Optimizing the objective function with an aspiration

level is seen as a goal to be achieved. In its simplest and general form, goal programming

can be stated as follows:

1
min

k p
i i

i
f x z       (5.6)

where z is the vector indicating the aspiration levels.
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5.2.4. Interactive Methods

This section on traditional methods is concluded by looking at the class of interactive

methods, which allows the decision maker to interact with the optimization algorithm. In

general, the interaction can be described step-by-step as follows (Miettinen, 1999):

1. Find an initial feasible solution

2. Interact with the decision maker, and

3. Obtain a new solution (or a set of new solutions). If the new solution (or one of them)

or one of the previous solutions is acceptable to the decision maker, stop. Otherwise,

go to (2).

As indicated in Miettinen (1999), using the interaction between the algorithm and the

decision maker, , many weaknesses of the above approaches can be alleviated. To date,

there are many approaches using an interactive style, namely, GDF (Geoffrion, Dyer &

Feinberg, 1972), Tchebycheff method (Steuer, 1986), Reference point method

(Wierzbiki, 1980), NIMBUS (Miettinen, 1994). Recently, interactive methods have also

been incorporated with MOEAs (Abbass, 2006).

5.3. Multi-Objective Evolutionary Algorithms

5.3.1. Overview

Multi-objective evolutionary algorithms (MOEAs) are stochastic optimization

techniques. Similar to other optimization algorithms, MOEAs are used to find Pareto

optimal solutions for a particular problem, but differ by using a population-based

approach. The majority of existing MOEAs employ the concept of dominance in their

courses of action (however,  see VEGA (Miettinen, 1999) for an example of not using a

dominance relation); therefore, the focus here is on the class of dominance-based

MOEAs.

The optimization mechanism of MOEAs is quite similar to that of EAs, except for the

use of the dominance relation. In more detail, at each iteration, the objective values are

calculated for every individual and are then used to determine the dominance

relationships within the population, in order to select potentially better solutions for the
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production of the offspring population. This population might be combined with the

parent population to produce the population for the next generation. Further, the existence

of the objective space might give MOEAs the flexibility to apply some conventional

supportive techniques such as niching.

Generally, MOEAs have to deal with two major issues (Deb, 2001): (1) How to get

close to the Pareto optimal front, which is not an easy task, because converging to the

POF is a stochastic process. (2) The second is how to maintain the diversity of solutions

in the obtained set. These two issues have become common criteria for most current

algorithmic performance comparisons (Deb, Zitzler & Thiele, 2000). A diverse set of

solutions will give more options for decision makers, designers and so forth. However,

working on a set of solutions instead of only one, makes the measurement of the

convergence of a MOEA harder, since the closeness of one individual to the optima does

not act as a measure for the entire set.

To date, many MOEAs have been developed. Generally speaking, there are several

ways to classify MOEAs. However, this chapter follows the one used by Coello C. A. C.

(2006), where they are classified into two broad categories: Non-elitism and Elitism.

5.3.2. Non-Elitism Approach

In the non-elitism approach, best solutions of current population are not preserved when

the next generation, based on the individuals of the current population, is created (Deb,

2001). Instead, selected individuals from the current generation are used to exclusively

generate solutions for the next generation by crossover and mutation operators as in EAs.

Coello C. A. C. (2006) refers to all algorithms using this approach as instances of the first

generation of MOEAs which implies simplicity. The only difference from conventional

EAs is  that  they  use  the  dominance  relation  when assessing  solutions.  Instances  of  this

category include MOGA (Fonseca C. M. & Fleming, 1993), NPGA (Horn, Nafpliotis &

Goldberg, 1994) and NSGA (Deb, 2001).

Although MOEAs are different from each other, the common steps of these algorithms

can be summarized as follows:

1. Initialize a population P
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2. Select elitist solutions from P to create/update an external set FP (For non-elitism

algorithms, FP is empty) (optional)

3. Create mating pool from one or both of P and FP

4. Perform reproduction based on the pool to create the next generation P

5. Possibly combine FP into P

6. Go to (2) if the termination condition is not satisfied.

Note that Steps (2) and (5) are used for elitism approaches that will be summarized in

the next subsection.

5.3.3. Elitism Approach

Elitism is a mechanism to preserve the best individuals from generation to generation.

In this way, the system never loses the best individuals found during the optimization

process. Elitism was used at quite an early stage of evolutionary computing (De Jong,

1975); and to date, it has been used widely with EAs. Elitism can be done by placing one

or more of the best individuals directly into the population for the next generations, or by

comparing the offspring individual with its parents and then the offspring will only be

considered if it is better than the parent (Storn & Price, 1995).

In the domain of evolutionary multi-objective optimization, elitist MOEAs usually (but

not necessarily) employ an external set (the archive) to store the non-dominated solutions

after each generation. In general, when using the archive, there are two important aspects,

as follows:

1. Interaction between the archive and the main population: This is about how we

use the archive during the optimization process; for example, one such way is to

combine the archive with the current population to form the population for the next

generation (Zitzler, Laumanns & Thiele, 2001).

2. Updating the archive: This is about the methodology to build the archive; one such

method is by using the neighborhood relationship between individuals using crowded

dominance (Deb et al., 2002), clustering (Zitzler et al., 2001), or geographical grid

(Knowles J. D. & Corne, 2000), while another method is by controlling the size of the

archive through truncation when the number of non-dominated individuals are over a

predefined threshold.
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Obviously, the current archive might then be a part of the next generation; however, the

way to integrate this archive may be different from one algorithm to another. In general,

with elitism, the best individuals in each generation are always preserved, and this helps

the algorithms to get closer to the POF; a proof of convergence for MOEAs using elitism

can be found in (Rudolph & Agapie, 2000). Algorithms such as PAES (Knowles J. D. &

Corne, 2000), SPEA2 (Zitzler et al., 2001), PDE (Abbass, Sarker & Newton, 2001),

NSGA-II (Deb et al., 2002) and MOPSO (Coello CAC, Pulido & Lechuga, 2004) are

typical examples of this category.

5.3.4. Selected MOEAs

This section will summarize several approaches in the literature.

5.3.4.1 Non-Dominated Sorting Genetic Algorithms Version 2: NSGA-II

NSGA-II is an elitism algorithm (Deb, 2001; Deb et al., 2002). The main feature of

NSGA-II lies in its elitism-preservation operation. Note that NSGA-II does not use an

explicit archive; a population is used to store both elitist and non-elitist solutions for the

next generation. However, for consistency, it is still considered as an archive. Firstly, the

archive size is set equal to the initial population size. The current archive is then

determined based on the combination of the current population and the previous archive.

To do this, NSGA-II uses dominance ranking to classify the population into a number of

layers, such that the first layer is the non-dominated set in the population, the second

layer is the non-dominated set in the population with the first layer removed, the third

layer is the non-dominated set in the population with the first and second layers removed

and so on. The archive is created based on the order of ranking layers: the best rank being

selected first. If the number of individuals in the archive is smaller than the population

size, the next layer will be taken into account and so forth. If adding a layer makes the

number of individuals in the archive exceed the initial population size, a truncation

operator is applied to that layer using crowding distance.

The crowding distance D of  a  solution x is calculated as follows: the population is

sorted according to each objective to find adjacent solutions to x; boundary solutions are

assigned infinite values; the average of the differences between the adjacent solutions in
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each objective is calculated; the truncation operator removes the individual with the

smallest crowding distance.

1 1

max min
1

m m
x xI IM

m m

m m m

F FD x
F F

      (5.7)

in which F is the vector of objective values, and m
xI  returns the sorted index of solution x,

according to objective mth.

An offspring population of the same size as the initial population is then created from

the archive, by using crowded tournament selection, crossover, and mutation operators.

Crowded tournament selection is a traditional tournament selection method, but when

two solutions have the same rank, it uses the crowding distance to break the tie.

5.3.4.2 A Pareto-Frontier Differential Evolution Algorithm for MOPs:

PDE

This algorithm works as follows (Abbass et al., 2001): an initial population is generated

at random from a Gaussian distribution with a predefined mean and standard deviation.

All dominated solutions are removed from the population. The remaining non-dominated

solutions are retained for reproduction. If the number of non-dominated solutions exceeds

some threshold, a distance metric relation is used to remove those parents who are very

close to each other. Three parents are selected at random. A child is generated from the

three parents as in conventional single-objective Differential Evolution and is placed into

the population if it dominates the first selected parent; otherwise a new selection process

takes place. This process continues until the population is completed. A maximum

number of non-dominated solutions in each generation was set to 50. If this maximum is

exceeded, the following nearest neighbor distance function is adopted:

min min
2

i jx x x x
D x       (5.8)
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where i jx x x . That is, the nearest neighbor distance is the average Euclidean

distance between the closest two points. The non-dominated solution with the smallest

neighbor distance is removed from the population until the total number of non-

dominated solutions is retained at 50.

5.3.4.3 Strength Pareto Evolutionary Algorithm: SPEA2

SPEA2 is actually an extension of an elitism MOEA called “The Strength Pareto

Evolution Algorithm” - SPEA (Zitzler & Thiele, 1999). This section only concentrates on

the main points of SPEA2 (Zitzler et al., 2001). The initial population, representation and

evolutionary operators are standard: uniform distribution, binary representation, binary

tournament selection, single-point crossover, and bit-flip mutation. However, the distinctive

feature of SPEA2 lies in the elitism-preserved operation.

An external set (archive) is created for storing primarily non-dominated solutions. It is

then combined with the current population to form the next archive that  is  then used to

create offspring for the next generation. The size of the archive is fixed. It can be set to be

equal to the population size. Therefore, two special situations exist when filling solutions

in the archive:.If the number of non-dominated solutions is smaller than the archive size,

other dominated solutions taken from the remainder part of the population are filled in.

This selection is carried out according to a fitness value, specifically defined for SPEA.

That is, the individual fitness value defined for a solution x,  is  the  total  of  the  SPEA-

defined strengths of solutions which dominate x, plus a density value.

The second situation happens when the number of non-dominated solutions is over the

archive size. In this case, a truncation operator is applied. For that operator, the solution

which  has  the  smallest  distance  to  the  other  solutions  will  be  removed  from  the  set.  If

solutions have the same minimum distance, the second nearest distance will be

considered, and so forth. This is called the k-th nearest distance rule.

5.3.4.4 Pareto Archived Evolutionary Strategy: PAES

This algorithm uses an evolutionary strategy for solving multi-objective problems

(Knowles  J.  D.  &  Corne,  2000).  Therefore,  it  uses  the  mutation  operator  only,  and  the

parental solutions are mutated to generate offspring. Similar to evolutionary strategies, it
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also has different versions such as (1+1), (1+ ), or ( , ). The unique property of PAES is

the way it uses and maintains elitism. We consider the case (1+1) as an example.

If the newly generated offspring dominates the parent, it replaces its parent. Conversely,

if the parent dominates the offspring, it is discarded and new offspring will be generated.

However, if both of them are non-dominated, there is a further mechanism to compare

them  (note  that  PAES  also  has  an  archive  to  store  the  non-dominated  solutions  over

time).  To  do  this,  the  offspring  will  be  compared  against  all  of  the  non-dominated

solutions found so far in the archive. There will be several possible cases as follows:

Offspring is dominated by a member of the archive: It is discarded and the parent

is mutated again.

Offspring dominates some members of the archive: These members are deleted

from the archive and the offspring is included into the archive. It also will be a parent

in the next generation.

Offspring is non-dominated with all members of the archive: Offspring will be

considered to be included into the archive depending on the current size of the

archive. Note that the parent is also a non-dominated solution and belongs to the

archive. Therefore, it is necessary to calculate the density in the areas of both

solutions in order to decide which one will be the parent of the next generation. For

this, a hyper-grid is built in the area of the objective occupied by the archive, where

all solutions in the archive will belong to different hyper-cells of the grid depending

on their locations. Thus, the offspring is selected if its cell is less crowded than that of

the parent.

To  keep  the  size  of  the  archive  always  below  its  limit,  PAES  also  uses  a  density

measure. The solution associated with the highest-density cell will be replaced by the

newcomer (the offspring).

5.3.4.5 Multi-Objective Particle Swarm Optimizer: MOPSO

This is an MOEA which incorporates Pareto dominance into a particle swarm

optimization  algorithm  in  order  to  allow  the  PSO  algorithm  to  handle  problems  with

several objective functions (Coello CAC et al., 2004). In PSO, a population of solutions

(particles) are used without either crossover or mutation operators. Each solution is
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assigned a velocity and uses this velocity to make a move in the search space. The

determination of the velocity of a particle is dependent on both the best position the

particle has achieved (the local best) and the best position the population has found so far

(the global best). Applying PSO to multi-objective optimization relies very much on how

to define the local and global best positions.

MOPSO keeps tracking the local best for every solution over time. In order to find the

global best position for each solution, MOPSO uses an external archive (secondary

repository) of particles to store all non-dominated particles. Each particle will be assigned

to a selected one in the archive (as the global best). The selection of a particle in the

archive is dependent on the density of the areas surrounding the particle. Further, the

archive is updated continuously and its size is controlled by using the grid technique

proposed in PAES where a hyper-grid is built in the area of the objective occupied by the

archive, and all solutions in the archive will belong to different hyper-cells of the grid

depending on their locations.

5.3.5. Performance Assessments

Performance metrics are usually used to compare algorithms in order to form an

understanding of which one is better and in what aspects. However, it is hard to define a

concise  definition  of  algorithmic  performance.  In  general,  when  doing  comparisons,  a

number of criteria are employed (Zitzler, Deb & Thiele, 2000):

Closeness of the obtained non-dominated set to the Pareto optimal front.

A good (in most cases, uniform) distribution of solutions within the set.

Spread of the obtained non-dominated front, that is, for each objective, a wide range

of values should be covered by the non-dominated solutions.

Based on these criteria, the community of evolutionary multi-objective optimization has

developed a number of performance metrics. Recently, there have been a number of

works to develop platforms for performance assessments including the most popular

metrics  such  as  the  PISA  system  (Bleuler,  Laumanns,  Thiele  &  Zitzler,  2003).  This

section will provide a summary of the most popular of these metrics.
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5.3.5.1 Metric Evaluation Closeness to the POF

The first obvious metric is the error rate, ER, introduced by Veldhuizen (1999). It is

calculated by the percentage of solutions that are not in the POF:

1

N

i
i

e
ER

N
      (5.9)

where N is the size of the obtained set and 1ie  if the solution i is  not  in  the  POF,

otherwise 0ie .  The smaller the ER, the better the convergence to the POF. However,

this metric does not work in the case when all the solutions of two compared sets are not

in  the  POFs.  In  this  case,  a  threshold  is  employed,  such  that  if  the  distance  from  a

solution i to the POF is greater than the threshold, 1ie , otherwise 0ie .

The second metric is the generation distance, GD, which is the average distance from

the set of solutions found by evolution to the POF (Veldhuizen, 1999)

2

1

N

i
i

d
GD

N
    (5.10)

where id  is the Euclidean distance (in objective space) from solution i to the nearest

solution in the POF. If there is a large fluctuation in the distance values, it is also

necessary to calculate the variance of the metric. Finally, the objective values should be

normalized before calculating the distance.

5.3.5.2 Metric Evaluating Diversity among Obtained Non-Dominated

Solutions

The spread metric is also animport performance comparison. One of its instances is

introduced by Schott (1995), called the spacing method.
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where

1,..., 1
min

M
i j

i m mj N m
d f f     (5.12)

and mf is the mth objective function. N is  the  population  size  and M is the number of

objectives. The interpretation of this metric is that the smaller the value of S, the better

the distribution in the set. For some problems, this metric might be correlated with the

number of obtained solutions. In general, this metric focuses on the distribution of the

Pareto optimal set, not the extent of the spread.

Deb et al. (2002) proposed another method to alleviate the problem of the above spacing

method. The spread of a set of non-dominated solutions is calculated as follows:
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    (5.13)

where id can be any distance measure between neighboring solutions and d is the mean

value of these distances. e
id is the distance between extreme solutions of the obtained

non-dominated set and the true Pareto optimal set.  ranges from 0 to 1. If it is close to

1, the spread is bad.

5.3.5.3 Metric Evaluation: both Closeness and Diversity

All the metrics discussed in the previous section focus on a single criterion only. This

section summarizes two metrics that take into account both closeness and diversity. The

first  one  is  the  hyper-volume  ratio  (Zitzler  &  Thiele,  1999),  one  of  the  most  widely

accepted by the research community of MOEAs. To calculate the hyper-volume, an area

of objective space covered by the obtained POF is measured, called the hyper-area.
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Calculating the hyper-volume is a time consuming process, although recently several

attempts have been made to speed up this process (While, Bradstreet, Barone &

Hingston, 2005; While, Hingston, Barone & Huband, 2006). In general, for two sets of

solutions, whichever has the greater value of hyper-volume will be the best. However,

when using hyper-volume it is sometimes difficult to understand the quality of the

obtained POF in comparison with the true POF.

As recommended by Coello C. A. C. (2006) and Veldhuizen (1999), it is considered

better to use the hyper-volume ratio (HR) that is measured by the ratio between the

hyper-volumes of hyper-areas covered by the obtained POF and the true POF, called H1

and H2 respectively. HR is calculated as in equation (5.14). For this metric, the greater the

value of HR, the better the convergence the algorithm provides.

1

2

HHR
H

    (5.14)

There are some questions on how to determine the reference point for the calculation of

the hyper-volume. For example, it can be the origin (Veldhuizen, 1999). However,

generally it is dependent on the area of the objective space that is visited by all comparing

algorithms. In this revised version, as suggested elsewhere (Deb, 2001), the reference

point  is  the  one  associated  with  all  the  worst  values  of  objectives  found  by  all  the

algorithms under investigation.

The second metric uses a statistical comparison method. It was first introduced by

Fonseca C. and Fleming (1996).  For experiments of MOEAs which generate a large set

of solutions, this metric is often the most suitable, as their data can easily be assessed by

statistical methods. Knowles J. D. and Corne (2000) modified this metric and instead of

drawing parallel lines, all lines originate from the origin. The basic idea is as follows:

suppose that two algorithms (A1,  A2) result in two non-dominated sets: P1 and P2. The

lines that join the solutions in P1 and P2 are called attainment surfaces. The comparison is

carried out in the objective space. In order to do the comparison, a number of lines are

drawn from the origin (assuming a minimization problem), such that they intersect with

the surfaces. The comparison is then individually done for each sampling line to

determine which one outperforms the other. Each intersection line will then yield a
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number of intersection points. In this case, statistical tests are necessary to determine the

percentage an algorithm outperformed the other in each section. For both of these

methods, the final results are two numbers that show the percentage of the space where

each algorithm outperforms the other.

5.3.6. Statistical Testing

Since MOEAs (and EAs in general) are stochastic, we cannot rely on the results

obtained from only one run tested on a particular problem. Therefore, it is necessary that

every algorithm involved in the comparison be tested on the problem for a number of

independent runs (equivalent to using different random seeds). In general, all algorithms

were usually tested for a number of runs. By applying the aforementioned metrics (except

the one using attainment surfaces), at the end, a set of numerical values was obtained for

each algorithm. All comparisons will be done on these sets. From the statistical point of

view, there are a number of concepts that can be used to compare the sets, including the

mean, standard deviation, and median. However, the confidence on using these concepts

in  comparison  is  questionable.  In  general,  the  final  decision  on  the  performance  of

algorithms will be made after completing statistical testing.

5.4. Summary
Real-world problems often have multiple conflicting objectives. In single objective

problems, an optimum solution is a solution for which the criterion value is maximized

(or minimized) when compared to any other alternative in the set of all feasible

alternatives. In multi-objective problems, the notion of an “optimum solution” does not

usually exist in the context of conflicting, multiple objectives. In general, it is called a

Pareto optimal solution if no other feasible solution exists which would decrease some

objectives (suppose a minimization problem) without causing a simultaneous increase in

at least one other objective.

Several traditional multi-objective optimization algorithms have been reviewed, such as

the global criterion method, which transforms MOPs into single objective optimization

problems by minimizing the distance between some reference points and the feasible

objective region, or the weighted-sum method, in which all the objectives are combined

into a single objective by using a weight vector.
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Multi-objective Evolutionary algorithms have also been reviewed. Some of the

evolutionary algorithms discussed use a non-elitism approach, such as MOGA, NPGA

and NSGA. In a non-elitism approach the best solutions of the current population are not

preserved when the next generation is created. Other evolutionary algorithms do use an

elitisim approach, such as the NSGA2, SPEA2, PAES and others.

Finally, performance assessment methods have been discussed as well as statistical

testing.
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6. Evolutionary Algorithms for Solving Real-Time
Multi-Objective Vehicle Routing Problems

6.1. Evolutionary Algorithms
 Evolutionary Algorithms belong to the Evolutionary Computation field of study

concerned with computational methods inspired by the process and mechanisms of

biological evolution. The process of evolution by means of natural selection (descent with

modification) was proposed by Darwin to account for the variety of life and its suitability

(adaptive fit) for its environment. The mechanisms of evolution describe how evolution

actually takes place through the modification and propagation of genetic material

(proteins). Evolutionary Algorithms are concerned with investigating computational

systems that resemble simplified versions of the processes and mechanisms of evolution,

toward achieving the effects of these processes and mechanisms, namely the development

of  adaptive  systems.  Additional  subject  areas  that  fall  within  the  realm of  Evolutionary

Computation are algorithms that seek to exploit the properties from the related fields of

Population Genetics, Population Ecology, Coevolutionary Biology, and Developmental

Biology.

Evolutionary Algorithms share properties of adaptation through an iterative process that

accumulates and amplifies beneficial variation through trial and error. Candidate

solutions represent members of a virtual population striving to survive in an environment

defined by a problem specific objective function. In each case, the evolutionary process

refines the adaptive fit of the population of candidate solutions in the environment,

typically using surrogates for the mechanisms of evolution such as genetic recombination

and mutation.

There are many excellent texts on the theory of evolution, although Darwin’s original

source can be an interesting and surprisingly enjoyable read (Darwin, 1859). Huxley’s

book defined the modern synthesis in evolutionary biology that combined Darwin’s

natural selection with Mendel’s genetic mechanisms (Huxley, 1942), although any good

textbook on evolution will suffice. Popular science books on evolution are an easy place

to start, such as Dawkins’ “The Selfish Gene” that presents a gene-centric perspective on
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evolution (Dawkins, 2006), and Dennett’s “Darwin’s Dangerous Idea” that considers the

algorithmic properties of the process (Dennett, 1996).

6.1.1. Genetic Algorithms

6.1.1.1 Introduction

Genetic Algorithms (Mitchell, 1996; Sivanandam & Deepa, 2007) are a family of

computational models inspired by evolution. These algorithms encode a potential solution

to a specific problem on a simple chromosome-like data structure and apply

recombination operators to these structures in order to preserve critical information.

An implementation of a genetic algorithm begins with a population of (typically

random) chromosomes. One then evaluates these structures and allocated reproductive

opportunities in such a way that these chromosomes which represent a better solution to

the target problem are given more chances to ‘reproduce’ than those chromosomes which

are poorer solutions. The ’goodness’ of a solution is typically defined with respect to the

current population.

6.1.1.2 Biological Background

Genetic Algorithms (GA) search by simulating evolution, starting from an initial set of

solutions, and generating successive ”generations” of solutions. Genetic Algorithms are

inspired by the way living things evolved into more successful organisms in nature. The

main idea is survival of the fittest, a.k.a. natural selection.

A chromosome is a long, complicated thread of DNA (deoxyribonucleic acid).

Hereditary factors that determine particular traits of an individual are strung along the

length of these chromosomes, like beads on a necklace. Each trait is coded by some

combination of nucleotides (A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)).

Like an alphabet in a language, meaningful combinations of the nucleotides produce

specific instructions to the cell.

Changes occur during reproduction. The chromosomes from the parents exchange

information randomly by a process called crossover. Therefore, the offsprings exhibit

some traits of the father and some traits of the mother. A rarer process called mutation

also changes some traits. Sometimes an error may occur during copying of chromosomes
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(mitosis). As an example, the parent cell may have A-C-G-C-T but an accident may occur

and changes the new cell to A-C-T-C-T. Usually this results in a nonsensical sequence of

nonsensical and the cell does not survive. But over millions of years, sometimes the

accidental mistake produces a meaningful sequence of nonsensical, thus producing a

better species.

In nature, the individual that has better survival traits will survive for a longer period of

time. This in turn provides it a better chance to produce offspring with its genetic

material. Therefore, after a long period of time, the entire population will consist of lots

of genes from the superior individuals and less from the inferior individuals. In a sense,

the fittest survived and the unfit died out. This force of nature is called natural selection.

6.1.1.3 Genetic Algorithms

The major steps of genetic algorithms are the generation of a population of solutions,

finding the objective function and fitness function and the application of genetic

operators. These aspects are described next in this section. The working principle of a

traditional GA is as follows:

1. Set Population .

2. Add PopulationSize randomly created feasible individuals to Population.

3. While stop condition is not met do

a. Evaluate the fitness value of each individual in Population.

b. Set NewPopulation .

c. While the size of NewPopulation is less than PopulationSize do

i. Select Parent1 and Parent2 from Population based on the fitness

values of each individual.

ii. Apply crossover operation, with probability Cp , on Parent1 and

Parent2 to create Child1 and Child2.

iii. Apply mutation operation, with probability Mp , on Child1.

iv. Apply mutation operation, with probability Mp , on Child2.

v. Add Child1 and Child2 to NewPopulation.

d. Replace Population with NewPopulation.
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An important characteristic of genetic algorithm is the coding of variables that

describethe problem. The most common coding method is to transform the variables to a

binary  string  or  vector;  GAs  perform  best  when  solution  vectors  are  binary.  If  the

problem has more than one variable, a multi-variable coding is constructed by

concatenating as many single variables coding as the number of variables in the problem.

Genetic Algorithm processes a number of solutions simultaneously. Hence, in the first

step a population having P individuals is generated by pseudo-random generators whose

individuals represent a feasible solution. This is a representation of a solution vector in a

solution space and is called initial solution. This ensures that the search is robust and

unbiased, as it starts from a wide range of points in the solution space.

In the next step, individual members of the population are evaluated to find the

objective function value. In this step, the exterior penalty function method is utilized to

transform a constrained optimization problem to an unconstrained one. This is

exclusively problem specific. In the third step, the objective function is mapped into a

fitness function that computes a fitness value for each member of the population. This is

followed by the application of GA operators.

There are three main operators: reproduction, crossover and mutation to create a new

population. The purpose of these operators is to create new solutions by selection,

combination or alteration of the current solutions that have shown to be good temporary

solutions. The new population is further evaluated and tested until termination. If the

termination criterion is not met, the population is iteratively operated by the above three

operators and evaluated. This procedure is continued until the termination criterion is

met. One cycle of these operations and the subsequent evaluation procedure is known as a

generation in GAs terminology.

Reproduction (or selection) is an operator that makes more copies of better solutions in

a new population. Reproduction is usually the first operator applied on a population.

Reproduction selects good solutions in a population and forms a mating pool. This is one

of the reasons that the reproduction operation is sometimes known as the selection

operator. Thus, in the reproduction operation the process of natural selection causes those

individuals that encode successful structures to produce copies more frequently. To

sustain the generation of a new population, the reproduction of the individuals in the
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current population is necessary. For better individuals, these should come from the fittest

individuals of the previous population. There are a number of reproduction operators in

GA literature, but the essential idea in all of them is that the above average solutions are

picked from the current population, and their multiple copies are inserted in the mating

pool in a probabilistic manner.

The commonly-used reproduction operator is the proportionate reproduction operator

(Roulette-Wheel selection), where a solution is selected for the mating pool with a

probability proportional to its fitness. Thus, the ith solution in the population is selected

with a probability proportional to Fi. Since the population size is usually kept fixed in a

simple  GA,  the  sum  of  the  probability  of  each  solution  being  selected  for  the  mating

pools must be one. Therefore, the probability for selecting the ith string is

1

i
i n

j
j

Fp
F

      (6.1)

where n is the population size.

A crossover  operator  is  used  to  recombine  two solutions  to  get  a  better  solution.  In  a

crossover operation, the recombination process creates different individuals in the

successive generations by combining material from two individuals from the previous

generation. In reproduction, good solutions in a population are probabilistically assigned

a larger number of copies and a mating pool is formed. It is important to note that no new

solutions are formed in the reproduction phase. In the crossover operator, new solutions

are created by exchanging information among solutions of the mating pool.

The two solutions participating in the crossover operation are known as parent

solutions, and the resulting solutions are known as children solutions. Children solutions

produced by the crossover may or may not be better than the parent solutions, but this is

not a matter of serious concern, because if good solutions are created by crossover, there

will be more copies of them in the next mating pool generated by crossover. It is clear

from this discussion that the effect of crossover may be detrimental or beneficial. Thus, in

order to preserve some of the good solutions that are already present in the mating pool,

all solutions in the mating pool are not used in crossover. When a crossover probability,
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defined here as Cp  is used, only 100 Cp  per cent solutions in the population are used in

the crossover operation and 100 1 Cp  per cent of the population remains as they are in

the current population.

Many crossover operators exist in the GA literature. One site crossover and two site

crossover are the most common ones adopted. As noted before, solutions are usually

encoded using a string of binary digits. In most crossover operators, two strings

(solutions) are picked from the mating pool at random and some portion of the strings are

exchanged between the strings.

Figure 6.1 - One site crossover

Figure 6.2 – Two site crossover operation

In the one site crossover, a crossover site is selected randomly. The portions on the right

of the selected site of these two strings are exchanged to form a new pair of strings. The
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new strings are thus a combination of the old strings (Figure 6.1). Two site crossover is a

variation of the one site crossover, except that two crossover sites are chosen and the bits

between the sites are exchanged as shown in Figure 6.2.

One site crossover is more suitable when string length is small, while two site crossover

is suitable for large strings. Hence, the present work adopts a two site crossover. The

underlying objective of crossover is to exchange information between strings to get a

string that is possibly better than the parents.

Mutation adds new information in a random way to the genetic search process and

ultimately helps to avoid getting trapped at local optima. It is an operator that introduces

diversity in the population whenever the population tends to become homogeneous due to

repeated use of reproduction and crossover operators. Mutation may cause the

chromosomes of individuals to be different from those of their parent individuals.

In a sense, mutation is the process of randomly disturbing genetic information. They

operate at the bit level; when the bits are being copied from the current string to the new

string, there is a probability that each bit may become mutated. This probability is usually

quite a small value, referred to as mutation probability Mp . A coin toss mechanism is

employed; if a random number between zero and one is less than the mutation

probability, then the bit is inverted, so that zero becomes one and one becomes zero. This

helps in introducing a bit of diversity to the population by scattering the occasional

points.  This random scattering could result  in a better optima, or even modify a part  of

the genetic code that would be beneficial in later operations. On the other hand, it might

produce a weak individual that will never be selected for further operations.

These three operators are simple and straightforward. The reproduction operator selects

good solutions and the crossover operator recombines them, to create better solutions.

The mutation operator alters a solution locally expecting a better solution. Even though

none of these claims are guaranteed and/or tested while creating a solution, it is expected

that if bad solutions are created they will be eliminated by the reproduction operator in

the next generation and if good solutions are created, they will be increasingly

emphasized.

Application of these operators on the current population creates a new population. This

new population is used to generate subsequent populations and so on, yielding solutions
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that are closer to the optimum solution. The values of the objective function of the

individuals of the new population are again determined by decoding the strings. These

values  express  the  fitness  of  the  solutions  of  the  new  generations.  This  completes  one

cycle of a genetic algorithm called a generation. In each generation if the solution is

improved, it is stored as the best solution. This is repeated until convergence.

Problems with multiple objectives arise in a natural fashion in most disciplines, and

their solution has long been a challenge to researchers. Despite the considerable variety

of techniques developed in Operations Research (OR) and other disciplines to tackle

these problems, the complexities of their solution calls for alternative approaches.

The  use  of  evolutionary  algorithms  (EAs)  to  solve  problems  of  this  nature  has  been

motivated mainly because of the population-based nature of EAs which allows the

generation of several elements of the Pareto optimal set in a single run (Coello C. A. C. et

al., 2007). Additionally, the complexity of some multi-objective optimization problems

(MOPs) (e.g., very large search spaces, uncertainty, noise, disjoint Pareto curves, etc.)

may prevent use (or application) of traditional OR MOP-solution techniques.

In this study, two multi-objective Genetic algorithms are used, VEGA and SPEA2.

6.1.1.4 VEGA

The Vector Evaluated Genetic Algorithm (VEGA proposed by David Schaffer (Schaffer

J. D., 1985; Schaffer & Grefenstette, 1985), is normally considered the first

implementation of a multi-objective evolutionary algorithm (MOEA). The vector is by

definition the vector of k objective functions of the MOP. The VEGA approach is an

example of a criterion or objective selection technique where a fraction of each

succeeding population is selected based on separate objective performance. The specific

objectives for each fraction are randomly selected at each generation. VEGA tends to

converge to solutions close to local optima with regard to each individual objective.

The  VEGA  concept  is  that,  for  a  problem  with NumObj objectives, NumObj sub-

populations of size PopSize/NumObj each would be generated (assuming a total

population size of PopSize). Each sub-population uses only one of the NumObj objective

functions for fitness assignment. The proportionate selection operator is used to generate

the mating pool. These sub-populations are then shuffled together to obtain a new
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population of size PopSize,  on  which  the  GA  would  apply  the  crossover  and  mutation

operators in the usual way. Shuffling is done prior to sub-population partitioning in order

to reduce positional population bias. This process is illustrated in Algorithm 1. The

complexity of VEGA is clearly the same as the single-objective GA.

1. Set Population .

2. Add PopSize randomly created feasible individuals to Population.

3. While stop condition is not met do

a. For each individual Popul ni atio , evaluate ikf , which is the fitness value

of individual i in regard to objective function k, for all k NumObj , where

NumObj is the number of objective functions.

b. Set MatingPool .

c. While the size of MatingPool is less than PopSize do

i. Set k=1.

ii. Select PopSize
NumObj  individuals from Population, based on the fitness

value of each individual calculated for objective function k, ikf , and

add them to MatingPool.

iii. Increase k by 1.

d. Shuffle the MatingPool.

e. Set NewPopulation .

f. While the size of NewPopulation is less than PopSize do

i. Select Parent1 and Parent2 from MatingPool.

ii. Apply crossover operation, with probability Cp , on Parent1 and

Parent2 to create Child1 and Child2.

iii. Apply mutation operation, with probability Mp , on Child1.

iv. Apply mutation operation, with probability Mp , on Child2.

v. Add Child1 and Child2 to NewPopulation.

g. Replace Population with NewPopulation.

4. The  result  of  the  algorithm  is  the  set  of  all  non-dominated  solutions  in

Population.
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Algorithm 1 - VEGA algorithm

Schaffer realized that the solutions generated by VEGA were non-dominated in a local

sense, because their non-dominance was limited to the current population. And while a

locally dominated individual is also globally dominated, the converse is not necessarily

true (Schaffer J. D., 1985). An individual that is not dominated in one generation may

become dominated by an individual who emerges in a later generation. Also, Schaffer

noted a problem that in genetics is known as “speciation” (i.e., one could have the

evolution of “species” within the population which excel on different aspects of

performance). This problem arises because this technique selects individuals that excel in

one dimension of performance, without considering other dimensions. The potential

danger is that one could have individuals with what Schaffer called “middling”

performance in all dimensions, which could be very useful for compromise solutions, but

that would not survive under this selection scheme, since they are not at the extreme for

any dimension of performance (i.e., they do not produce the best value for any objective

function, but only moderately good values for all of them). Speciation is undesirable

because it is opposed to our goal of finding a compromise solution. Schaffer suggested

some heuristics to deal with this problem. For example, one could use a heuristic

selection preference approach for non-dominated individuals in each generation, to

protect the “middling” chromosomes. Also, crossbreeding among the “species” could be

encouraged by adding some mate selection heuristics instead of using the random mate

selection of the traditional GA (i.e., the use of mating restrictions). In accordance with the

discussion, VEGA uses a localized criterion for ranking as depicted in Figure 6.3.
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Figure 6.3 - VEGA's criterion-based ranking mechanism

Norris and Crossley (1998) and Crossley, Cook, Fanjoy and Venkayya (1999) believe

this technique reduces the diversity of any given PFcurrent(t). They implemented elitist

selection to ensure PFknown(t) endpoints (or in other words, PFknown(t)’s extrema) survive

between generations. Otherwise, the MOEA converges to a single design rather than

maintaining a number of alternatives. In other attempts to preserve diversity in PFcurrent(t)

they also employ a VEGA variant. Here, “k”-branch tournaments (where k is the number

of MOP objectives) allow each solution to compete once in each of k tournaments, where

each set of tournaments selects 1
k

th of the next population (Khuri, Bäck & Heitkötter,

1994).

Criticism of criterion selection techniques -  VEGA  is  very  simple  and  easy  to

implement,  since  only  the  selection  mechanism of  a  traditional  GA has  to  be  modified.

One of its main advantages is that despite its simplicity, this sort of approach can

generate several solutions in one run of the MOEA. However, note that the shuffling and

merging of all the sub-populations that VEGA performs corresponds to averaging the

fitness components associated with each of the objectives (Knowles J.  & Corne,  2002).

Since Schaffer uses proportional fitness assignment (Goldberg, 1989), these fitness

components are in turn proportional to the objectives themselves (Fonseca C.M. &

Fleming, 1995). Therefore, the resulting expected fitness corresponds to a linear
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combination  of  the  objectives  where  the  weights  depend  on  the  distribution  of  the

population at each generation as shown by Richardson, Palmer, Liepins and Hilliard

(1989). This means that VEGA has the same problems as the aggregating approaches

previously discussed (i.e., it is not able to generate concave portions of the Pareto front).

Nevertheless, VEGA has been found useful in other domains such as constraint-handling,

where its biased behavior can be of great help (Coello C., Aguirre & Buckles, 2000;

Coello Coello & Aguirre, 2002; Surry, Radcliffe & Boyd, 1995). Note that these

algorithmic developments were in part based upon consideration of the computational

hardware performance at the time. Other variations and extensions of the VEGA concept

included the Vector Optimized Evolution Strategy (VOES) by Kursawe (1991). His

approach  was  based  on  an  evolution  strategy  along  with  a  fitness  evaluation  process

similar  to  VEGA.  It  also  employed  a  diploid  chromosome scheme with  preservation  of

non-dominated solutions using an elitist approach. The WBGA (weight-based genetic

algorithm) proposed by Hajela and Lin (1992) is related to VEGA’s sampling approach,

but it uses a set of weights (each individual is assigned a vector containing such weights).

These vectors remain diverse across the population through niching and appropriately

selected sub-populations that are evaluated for different objectives in a way analogous to

VEGA.  Again,  this  MOEA  is  simple,  but  the  use  of  weighted  vectors  has  the  same

disadvantages as the independent sampling approach.

An Improved VEGA Algorithm

Elitism guarantees that the best solutions found in each iteration are passed on to the

next  iteration  and  not  lost.  The  original  VEGA  algorithm  does  not  use  elitism.

Conventionally, elitism is achieved by simply copying the solutions directly into the new

generation;  Next,  an  extended  version  of  the  VEGA  algorithm,  which  uses  elitism,  is

presented. In this version of the algorithm, the set of non-dominated chromosomes is

passed on to the next generation.

In order to describe how the elitism, or the preservation of high performance solutions,

is done in the enhanced VEGA algorithm, the concepts of dominated and non-dominated

solution have to be defined first. In single objective optimization problems, the “best”

solution is defined in terms of an “optimum solution” for which the objective function
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value is optimized when compared to any other alternative in the set of all feasible

alternatives. In multi-objective optimization problems, however, the notion of an

“optimum solution” does not usually exist, since the optimum of each criterion does not

usually point to the same alternative. The optimal solution in a multi-objective

optimization problem is usually equivalent to choosing the best compromise solution. In

the absence of an optimal solution, the concepts of dominated and non-dominated

solutions become relevant.

A feasible solution, x1, dominates another feasible solution, x2, if x1 is at least as good as

x2 with respect to all objective functions and is better than x2 with respect to at least one

objective function. A non-dominated solution is a feasible solution that is not dominated

by any other feasible solution. Hence the solution of a multi-objective problem is a set of

non-dominated feasible solutions.

Using the definition above, the set of high performance solutions can be defined as the

set of non-dominated solutions obtained in all iterations of the algorithm. This set of non-

dominated solutions, denoted as E, can be obtained if, in each iteration, any newly

obtained solution is added to the set E if it is not dominated by any solution already in E.

Moreover, if a newly obtained solution should be added to the set E, then any solution

already in E that is dominated by the newly obtained solution is removed from E. After

the last iteration, the result of the algorithm is the set E, which is the set of non-dominated

solutions obtained in all of the algorithm’s iterations.

The process of the improved VEGA algorithm is illustrated in Algorithm 2.

1. Set Population .

2. Set E .

3. Add PopSize randomly created feasible individuals to Population.

4. Add all dominated solution in Population into E.

5. While stop condition is not met do

a. For each individual Popul ni atio , evaluate ikf , which is the fitness value of

individual i in regard to objective function k, for all k NumObj , where NumObj

is the number of objective functions.

b. Set MatingPool .
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c. While the size of MatingPool is less than PopSize do

i. Set k=1.

ii. Select PopSize
NumObj  individuals from Population, based on the fitness value of

each individual calculated for objective function k, ikf ,  and  add  them  to

MatingPool.

iii. Increase k by 1.

d. Shuffle the MatingPool.

e. Set NewPopulation .

f. While the size of NewPopulation is less than PopSize do

i. Select Parent1 and Parent2 from MatingPool.

ii. Apply crossover operation, with probability Cp , on Parent1 and Parent2

to create Child1 and Child2.

iii. Apply mutation operation, with probability Mp , on Child1.

iv. Apply mutation operation, with probability Mp , on Child2.

v. Add Child1 and Child2 to NewPopulation.

g. Replace Population with NewPopulation.

h. Set E .

i. Add all non dominated solution in Population E  into E .

j. Replace E  with E .

6. The result of the algorithm is the set of all non-dominated solution E.

Algorithm 2 - Improved VEGA algorithm

6.1.1.5 Strength Pareto Evolutionary Algorithm: SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Zitzler and

Thiele (1999). This approach was conceived as a way of integrating different MOEAs.

SPEA uses an external archive containing non-dominated solutions previously found (the

so-called external non-dominated set). At each generation, non-dominated individuals are

copied to the external non-dominated set. For each individual in this external set, a
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strength value is computed. This strength is similar to the ranking value of MOGA

(Fonseca C. M. & Fleming, 1993), since it is proportional to the number of solutions

where a certain individual dominates. In SPEA, the fitness of each member of the current

population is computed according to the strengths of all external non-dominated solutions

that dominate it. The fitness assignment process of SPEA considers both closeness to the

true  Pareto  front  and  even  distribution  of  solutions  at  the  same  time.  Thus,  instead  of

using niches based on distance, Pareto dominance is used to ensure that the solutions are

properly distributed along the Pareto front. Although this approach does not require a

niche radius, its effectiveness relies on the size of the external non-dominated set. In fact,

since the external non-dominated set participates in the selection process of SPEA, if its

size grows too large, it might reduce the selection pressure, thus slowing down the search.

Because of this, the authors decided to adopt a technique that prunes the contents of the

external non-dominated set so that its size remains below a certain threshold. The

approach adopted for this sake was a clustering technique called average linkage method

(Morse, 1980).

A revised version of SPEA, called SPEA2, has three main differences with respect to its

predecessor (Zitzler et al., 2001): (1) it incorporates a fine-grained fitness assignment

strategy which takes into account for each individual the number of individuals that

dominate it and the number of individuals which it dominates; (2) it uses a nearest

neighbor density estimation technique which guides the search more efficiently, and (3) it

has an enhanced archive truncation method that guarantees the preservation of boundary

solutions.

The following pseudo code describes how SPEA2 works (Zitzler et al., 2001).

1. Set 0P , where P0 denotes the population set at generation 0.

2. Set 0P , where P  denotes an archive (external set).

3. Set t=0.

4. Add PopSize randomly created feasible individuals to P0.

5. For each individual t ti P P , evaluate its fitness value.

6. Set 1tP .
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7. Copy all non-dominated individuals from t tP P  to 1tP . If 1tP ArchiveSize  then

reduce 1tP  by means of the truncation operator, otherwise if 1tP ArchiveSize  then

fill 1tP  with dominated individuals in t tP P

8. If  stopping  condition  is  met  then  the  result  of  the  algorithm  is  the  set  of  all  non-

dominated individuals in 1tP . Stop.

9. Perform binary tournament selection with replacement on 1tP  in  order  to  fill  the

mating pool.

10. Apply recombination and mutation operators to the mating pool and set 1tP  to the

resulting population.

11. Set t=t+1

12. Go to Step 5.

Algorithm 3 – SPEA Algorithm

In step 5 of the SPEA2 pseudo code, the fitness value of each individual in t tP P  is

evaluated. To avoid the situation where individuals dominated by the same archive

members have identical fitness values, with SPEA2 for each individual both dominating

and dominated solutions are taken into account. In detail, each individual i in the archive

tP  and the population tP  is assigned a strength value S(i), representing the number of

solutions it dominates:

: t tPi j j iS P j       (6.2)

where  denotes the cardinality of a set, + stands for multi-set union and the symbol

corresponds to the Pareto dominance relation. On the basis of the S values, the raw fitness

R(i) of an individual i is calculated:

,t tP ij P j

R i S j (6.3)
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In other words, the raw fitness is determined by the strengths of its dominators in both

archive and population, as opposed to SPEA where only archive members are considered

in this context. It is important to note that fitness is to be minimized here, i.e., 0R i

corresponds to a non-dominated individual, while a high R(i) value means that i is

dominated by many individuals (which in turn dominate many individuals).

Although the raw fitness assignment provides a sort of niching mechanism based on the

concept of Pareto dominance, it may fail when most individuals do not dominate each

other. Therefore, additional density information is incorporated to discriminate between

individuals having identical raw fitness values. The density estimation technique used in

SPEA2 is an adaptation of the kth nearest neighbor method (Silverman, 1986), where the

density at any point is a (decreasing) function of the distance to the kth nearest data point.

Here, we simply take the inverse of the distance to the kth nearest neighbor as the density

estimate. To be more precise, for each individual i the distances (in objective space) to all

individuals j in archive and population are calculated and stored in a list. After sorting the

list in increasing order, the kth element  gives  the  distance  sought,  denoted  as k
i .  As  a

common setting, we use k equal to the square root of the sample size (Silverman, 1986),

thus, k N N  . Afterwards, the density D(i) corresponding to i is defined by

2
1

k
i

d i (6.4)

In the denominator, two is added to ensure that its value is greater than zero and that

1D i . Finally, adding D(i) to the raw fitness value R(i) of an individual i yields its

fitness F(i):

F i R i D i (6.5)
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The archive update operation (Step 7 in the algorithm's pseudo code) in SPEA2 differs

from the one in SPEA in two respects: (1) the number of individuals contained in the

archive is constant over time, and (2) the truncation method prevents boundary solutions

from being removed.

During environmental selection, the first step is to copy all non-dominated individuals,

i.e., those which have a fitness lower than one, from archive and population to the archive

of the next generation:

1 : 1t t tP FP i i P i       (6.6)

If the non-dominated front fits exactly into the archive ( 1tP N ) the environmental

selection step is completed. Otherwise, there can be two situations: Either the archive is

too  small  ( 1tP N )  or  too  large  ( 1tP N ). In the first case, the best 1tN P

dominated individuals in the previous archive and population are copied to the new

archive. This can be implemented by sorting the multi-set t tP P  according to the fitness

values and copy the first 1tN P  individuals i with 0F i  from the resulting ordered

list to 1tP . In the second case, when the size of the current non-dominated (multi)set

exceeds N , an archive truncation procedure is invoked which iteratively removes

individuals from 1tP  until j 1tP N . Here, at each iteration that individual i is chosen

for removal for which di j  for all 1tj P  with

1

1

0 :

0 : 0
:

:

k k
t i j

d l l k k
t i j i j

i
k P

j
k P l k

      (6.7)

where k
i  denotes the distance of i to its kth nearest neighbor in 1tP . In other words, the

individual which has the minimum distance to another individual is chosen at each stage;
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if there are several individuals with minimum distance, the tie is broken by considering

the second smallest distances and so forth.

6.1.2. Artificial Bee Colony

The artificial bee colony (ABC) algorithm proposed by Karaboga Dervis (2005) and

later modified by Karaboga D. and Akay (2011) is a new evolutionary meta-heuristic

technique inspired by the intelligent behavior of natural honey bees in their search for

nectar.

6.1.2.1 Biological Background

A bee colony can be thought of as a swarm whose individual agents are bees. Each bee

at the low-level component works through a swarm at the global level of component to

form a system. Thus, the system’s global behavior is determined from its individual's

local behavior, where the different interactions and coordination among individuals leads

to an organized teamwork system. This system is characterized by nteracting collective

behavior through labor division, distributed simultaneous task performance, specialized

individuals, and self- organization.

The exchange of information among bees leads to the formation of a tuned collective

knowledge. A colony of honey bees consists of a queen, many drones (males) and

thousands of workers (non-reproductive females). The queen's job is to lay eggs and to

start new colonies. The sole function of the drones is to mate with the queen and during

the fall they are ejected from the colony. The worker bees build honeycomb, and the

young bees clean the colony, feed the queen and drones, guard the colony, and collect

food.

As nectar is the bees' energy source, two kinds of worker bees are responsible for food.

These are scout bees and forager bees. A bee does many things in its life history, and

does not become a scout/work bee until late in its life.

While scout bees carry out the exploration process of the search space, forager bees

control the exploitation process. However, exploration and exploitation processes must be

carried out together by the colony’s explorers and the colony’s exploiters. As the increase
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in the number of scouts encourages the exploration process, the increase of foragers

encourages the exploitation process.

Studying the foraging behavior leads to optimal foraging theory that directs activities

towards achieving goals. This theory states that organisms forage in such a way as to

maximize their intake energy per unit of time. In other words, the swarm of bees behaves

in such a way as to find and capture the food containing the most energy while expending

the least possible amount of time in real variables. There are two forms of scenarios for

any bee in the forging process, either scout or forager. The following subsections present

these two scenarios:

The Behavior of Scouts Scenario

Scouts fly around and search for food. When they find a source of nectar or pollen, they

fly back to the colony and start dancing to communicate with other bees on a particular

region in the comb.

Hence the behavior of the scout scenario is summarized according to the following

activities:

The scout flies from its colony searching for food sources in a random way. Once it

finishes a full trip, it returns back to its colony. When a scout arrives at the colony, it goes

inside and announces its presence by the wing vibrations. This means that it has a

message to communicate.

If it has found a nearby source of nectar or pollen, it performs a circular dance. The

nearby bees follow it through this circular dance and smell it for the identity of the

flowers. They listen to the intensity of the wing vibrations to indicate the value of the

food source.

If the source is very close, no directions are given. Alternatively, if the flower source is

far away, careful directions must be given.

The abstract convention that the scout makes is that the up position on the comb is the

position  of  the  sun.  Because  bees  can  see  polarized  light,  they  can  tell  sun  position

without actually seeing the sun. The scout dances in a precise angle from the vertical.

This equals to the horizontal  angle of the sun with reference to the colony exit  with the

location of the food source.
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Next, the scout bee must tell the other bees how far away the flower source is. This is

done by waggling the abdomen from side to side. The slower the waggling, the further

away is the distance of the food flower.

Thus, the dance of scouts points to the direction, distance, and quality of food source.

Since various groups of scouting bees compete with each other, the decision is finally

made in favor of the best domicile.

The Behavior of Foragers Scenario

The reaction of the forager bees to this show concludes in the following steps:

The bees in the colony closely follow the scout to learn their directions, and also learn

the odor of the flower on the scout bee,  so they can find the flower when they arrive at

the source location.

Because the sun is moving in the sky, the bees should use an accurate clock sense to

adjust for the changing sun position with reference to the food source and the colony exit.

Even more remarkable, if a trained bee is removed from the colony to another location

where the flower is not visible, but the colony is, the bee does not return to the colony to

get its bearing, but reads sun position, triangulates, and flies directly to the flower.

Subsequently, the forager bees take a load of nectar from the source and return to the

colony and unload the nectar to the store of food.

Foraging requires energy and the honeybee’s evaluation as to where, what, and how

long to forage are all related to the economics of energy consumption and the net gain of

food to the colony.

Generally bees fly only as far as necessary to secure an acceptable food source from

which there is a net-gain. Therefore, these are the factors that influence foraging behavior

and determine profitability. The net rate of energy intake is defined as the energy gained

while foraging minus the energy spent on foraging, divided by time spent foraging.

6.1.2.2 Artificial Bee Colony Algorithm

In the ABC algorithm, the colony of artificial bees consists of three groups of bees: (1)

employed bees - bees that are currently exploiting a food source; (2) onlookers - bees that



- 131 -

are waiting in the hive for the employed bees to share information about the food sources;

and (3) scouts - bees that are searching for new food sources in the neighborhood of the

hive.

The ABC algorithm is an iterative algorithm. It starts by assigning each employed bee

to a randomly generated solution (known as a food source). Next, in each iteration, each

employed bee, using a neighborhood operator, finds a new food source near its assigned

food source. The nectar amount (defined as a fitness function) of the new food source is

then evaluated. If the amount of nectar in the new food source is higher than the amount

of nectar in the old one, then the older source is replaced by the newer one. Next, the

nectar information of the food sources is shared with the onlookers (real bees do this by

dancing in the dance area inside the hive). The onlooker chooses a food source according

to the probability proportional to the quality of that food source. Roulette wheel selection

is the usual method. Therefore, good food sources, as opposed to bad ones, attract more

onlooker bees. Subsequently, using a neighborhood operator, each onlooker finds a food

source near its selected food source and calculates its nectar amount. Then, for each old

food source, the best food source among all the food sources near the old one is

determined. The employed bee associated with the old food source is assigned to the best

food source and abandons the old one if the best food source is better than the old food

source.  A food  source  is  also  abandoned  by  an  employed  bee  if  the  quality  of  the  food

source has not improved in the course of a predetermined and limited number of

successive iterations. The employed bees then become scouts and randomly search for

new food source. After a scout finds a new food source, it becomes an employed bee

again. After each employed bee is assigned to a food source, another iteration of the ABC

algorithm begins. The iterative process is repeated until a stopping condition is met.

Szeto, Wu and Ho (2011) describe the steps of the ABC algorithm as follows:

1. Randomly generate a set S of i solutions as initial food sources, where i is the number

of employed bees. Assign an employed bee to each food source.

2. Evaluate the nectar amount (fitness), if s , of each food source, for each objective

function j.

3. Repeat until a stopping condition is met:
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a. For each food source is S , apply the neighborhood operator to generate a

neighbor food source, is . If the fitness of the neighbor food source is better than

that of the original food source, i.e., i if s f s  for maximization problems,

then replace the original food source with this neighbor food source.

b. Set 0 1, ,... ,iG G G where i is the number of employed bees.

c. For each onlooker, use the fitness-based roulette wheel selection method to select

a food source, is . Apply a neighborhood operator to is  to find a neighbor food

source, say is . Add is  to iG , i.e. { }i i iG G s .

d. For each food source is S , if iG  then let s  be  the  source  food  with  best

fitness value in iG .  If  the  fitness  of s  is better than that of is , then replace is

with s .

e. Replace any food sources is S  whose fitness has not been improved for limit

iterations with randomly generated solutions.

4. Output the best food source (solution) found (meaning the set E).

Algorithm 4 - ABC Algorithm

Vector Evaluated Artificial Bee Colony Algorithm

Since ABC algorithms share common characteristics with GAs, simple modifications

made to the basic GAs can be adopted and applied to ABC algorithms in order to solve

multi-objective Real-Time VRPs. The vector evaluated genetic algorithm (VEGA)

proposed by Schaffer J. (1985) is an example of such modification that can easily be

applied to ABC algorithms.

Assuming NumObj represents the number of objective functions and NumEmpBees

represents the number of employed bees, and based on the structure of the ABC

algorithm, the vector evaluated technique and the use of elitism, which is the process of

preserving previous high performance solutions from one generation to the next, the new

combined VE-ABC algorithm that we propose is defined as follows:
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1. Set E .

2. Randomly generate a set S of i solutions as initial food sources, where i is the number

of employed bees. Assign an employed bee to each food source.

3. Evaluate the nectar amount (fitness), j if s , of each food source, for each objective

function j.

4. For each s S , if s is a non-dominated solution add s to E.

5. Repeat until a stopping condition is met

a. For each food source is S , apply the neighborhood operator to generate a

neighbor food source, is . If the fitness of the neighbor food source is better than

that of the original food source, based on objective function j, i.e. j i j if s f s

for maximization problems, when  modij NumObj
NumEmpBees

NumObj

, then

replace the original food source with this neighbor food source.

b. Set 0 1, ,... ,iG G G where i is the number of employed bees.

c. For each onlooker, use the fitness-based roulette wheel selection method to select

a food source, is , using objective function j, where

 modij NumObj
NumEmpBees

NumObj

. Apply a neighborhood operator to is  to

find a neighbor food source, say is . Add is  to iG , i.e. { }i i iG G s .

d. For each food source is S , if iG  then let s  be the source food with best

fitness value in iG , when the fitness is evaluated regarding objective j, when

ij
NumEmpBees

NumObj

. If the fitness of s  is better than that of is , then replace

is  with s .
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e. For each s S , if s is not dominated by any solution e E , add s to E and check

each solution e E . If e is dominated by s, remove e from E.

f. Replace any food sources is S  whose fitness has not been improved for limit

iterations with randomly generated solutions.

2. Output the best food source (solution) found (meaning the set E).

6.2. Representation and Genetic Operations

6.2.1. Representation

The first step in designing an Evolutionary Algorithm (EA) for a particular problem is

to devise a suitable representation scheme. This is very important because the rest of the

algorithm depends on this representation. Traditionally, solutions are represented by a

simple binary string. This simple representation is not appropriate for the VRP. During

the last few years several representations have been considered in connection with the

VRP. A very popular, if not the most popular, representation method for the VRPs (or

TSPs) that are solved by EAs is permutation representation. The permutation

representation is easy to understand and to represent a simple TSP tour for a single

vehicle. The problem we want to solve in this research is a real-time multi-vehicle

problem, and therefore, the permutation representation method needs some modifications.

A candidate solution to an instance of the VRP must specify the number of vehicles

required, the partition of the demands through all these vehicles, the delivery order for

each route as well as waiting time at each customer. Let a node object define an object

that has two properties, customer number and waiting time at customer. A solution to the

multi-objective real-time VRPs can be encoded using an array of node objects, and based

on the permutation representation.  A solution contains several  routes,  each one of them

composed by an ordered subset of the costumers. All demands belonging to the problem

being solved must be present in one of the routes (Pereira, Tavares, Machado & Costa,

2002; Szeto et al., 2011). As an example, consider a VRP in which 10 customers have to

be served from a central depot. A possible solution to the problem is presented in Figure

6.4.
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Figure 6.4 - A possible solution to VRP with 10 customers

As stated earlier, the solution presented in Figure 6.4 can be encoded using an array of

node objects. The solution from

Figure 6.5 represents the encoding of the solution presented in Figure 6.4.

Figure 6.5 – Representation of a solution to VRP with 10 customers

As seen in the above example, ten customers have to be served from a central depot.

This is done using three vehicles, each assigned to a different route. The first route starts

at the depot, and visits customers 3, 2 and 7 in that same order. The first route ends at the

depot. The second route starts at the depot, and visits customers 4, 9, 1 and 10 in that

same  order  and  ends  at  the  depot.  The  third  and  last  route  starts  at  the  depot,  visits

customers 8, 6 and 6 in that same order and ends at the depot. Since all routes end at the

depot, it is possible to define a solution using an array of integers in the following way:
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Let S[i] denote the node object stored at index i of the node objects array, and let

S[i].CustNum denote the value of the customer number property belonging to node object

S[i].

S[1].CustNum, the value of the customer number proper that belongs to the first node

object of the array, points to the start location of the first route (it also contains

information about the waiting time at the same location, S[1].WaitTime (not shown in

Figure 6.5)). A start location with value of zero means that the route starts at the depot.

The value of S[2].CustNum is the first customer of the first route. S[3].CustNum is the

second customer in the route and so on. The route continues until it reaches an index, i,

for which S[i].CustNum is zero. Since all routes end at the depot, this means that after

visiting some customers, the route ends at the depot. The value of S[i+1].CustNum is the

start location of the next route, which is described in the same way.

In real-time problems, routes have to reflect the status of vehicles which are not always

located at the depot. If, at calculation time, a vehicle is positioned at a customer, then

there should be a corresponding route in the array, which starts with the same customer.

In the same way, if, at calculation time, a vehicle is driving from customer one to

customer two, then there should be a corresponding route in the array, which starts with

customer one, and whose second location is customer two.

6.2.2. Genetic Operations

Crossover and mutation are the genetic operators used in the general GAs. In ABCs

only neighborhood operators, which are equivalent to GA's mutation operators, are used.

Solutions used in a specific problem have their own characteristics, and some particular

crossover operators are needed. We use crossover and mutation for the real-time multi-

objective VRP. All offspring created after three genetic operators are tested for

feasibility. If the offspring do not satisfy feasibility, they need the repairing steps and

then they are included in the sampling space.

6.2.2.1 Crossover

Based on the idea that the exchange of information between good chromosomes will

generate even better offspring, the crossover operator combines information, or sub-
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solutions, from two solutions to create a better solution. As mentioned earlier, children

solutions, produced by the crossover, may or may not be better than the parents solutions,

but this is not a matter of serious concern, because if good solutions are created by

crossover, there will be more copies of them in the next mating pool generated by

crossover. Since, from the above, the effect of crossover may be detrimental or beneficial,

in order to preserve some of the good solutions that are already present in the mating

pool, none of the solutions in the mating pool are used in crossover. When a crossover

probability, defined here as Cp  is used, only 100 Cp  per cent solutions in the population

are used in the crossover operation and 100 1 Cp  per cent of the population remains as

they are in the current population.

Many crossover operators exist in the GA literature. One site crossover and two site

crossovers are the most common ones adopted.

In a one site crossover, two parent solutions, Parent1 and Parent2, are picked from the

mating pool. Assuming that the solutions are encoded using a bit-string of size N, a single

crossover point¸ C, is randomly selected. Two new children solutions are not built based

on the parents solutions in the following ways: Bits 1 to C, of Child1 bit-string encoding,

are equal to bits 1 to C of Parent1 bit-string encoding. Bits C+1 to N, of Child1 bit-string

encoding, are equal to bits C+1 to N of Parent2 bit-string encoding. Similarly, bits 1 to C,

of Child2 bit-string encoding, are equal to bits 1 to C of Parent2 bit-string encoding and

bits C+1 to N, are equal to bits C+1 to N of Parent1 bit-string encoding.

Figure 6.6 - One site crossover
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In a two sites crossover, two parent solutions, Parent1 and Parent2, are picked from the

mating pool. Two crossover points¸ C1 and C2, are randomly selected. Two new children

solutions are not built based on the parents solutions in the following ways: Bits 1 to C1,

of Child1 bit-string encoding, are equal to bits 1 to C1 of Parent1 bit-string encoding. Bits

C1+1 to C2, of Child1 bit-string encoding, are equal to bits C1+1 to C2 of Parent2 bit-

string encoding. Bits C2+1 to N, of Child1 bit-string encoding, are equal to bits C2+1 to N

of Parent1 bit-string encoding. Similarly,  bits  1 to C1, of Child2 bit-string encoding, are

equal to bits 1 to C1 of Parent2 bit-string encoding, bits C1+1 to C2, of Child2 bit-string

encoding, are equal to bits C1+1 to C2 of Parent1 bit-string encoding and bits C2+1 to N,

are equal to bits C2+1 to N of Parent2 bit-string encoding.

Figure 6.7 – Two site crossover operation

The crossover operator used in our approach does not promote a mutual exchange of

genetic material between two parents. Instead, when submitted to this kind of operation,

one individual receives a fragment of genetic material (more precisely, a sub-route) from

another parent and inserts it in one of its own routes. The donor is not modified. The

geographical location of the costumers is used to determine the position where the sub-

route is inserted. The following algorithm clarifies how crossover is applied to the

individuals of the selected set:

1. Get a sub-sequent from 2nd chromosome (sub-sequent must begin with start-

route and end with end-route)
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2. remove all customers found in the sub-sequent from the first chromosome

3. insert the sub-sequent at the end of the 1st chromosome

Figure 6.8 – Crossover operation

The example from Figure 6.8 helps to illustrate how crossover acts. In the example two

parent solutions, Parent1 and Parent2, were chosen. In the example, both Parent1 and

Parent2 represent  solutions  with  four  routes.  The  first  route  of Parent1 is 0-15-2-4-3-0,

the second route is 0-12-16-14-8-0, the third route is 9-10-11-5-0 and the fourth and last

route is 0-13-7-1-0. Similarly, the first route of Parent2 is 9-10-3-7-15-0, the second route

is 0-8-6-11-12-0, the third route is 0-1-5-14-0 and the fourth and last route is 0-13-4-2-0.

In order to create the child solution (the result of the crossover operation), we first make a

copy of Parent1. Second, a route is randomly selected from Parent2. While in the

example, one route, 0-8-6-11-12-0, was selected, the crossover allows for more than one

route to be selected, as long as they are sequential routes. The next step is to remove all

customers  found in  the  selected  route(s)  from the  copy  of Parent1. This operation may

result in empty routes in the copy of Parent1, so a cleanup procedure has to be applied on

it.  Next,  a  route  in  the  copy  of Parent1 is randomly selected, and the selected route(s)

from Parent2 are inserted before or after it. In the example, the randomly selected route

from the copy of Parent1 is  the  last  route,  and  the  select  route  from Parent2 is inserted

after it, meaning, added to the end of the solution. The result of the last operation is the

result of the crossover operation, the child route.

Since each parent solution represents a feasible solution, applying the described

crossover operation results in a new feasible solution.
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6.2.2.2 Mutation

Mutation  adds  new  information  in  a  random  way  to  a  given  solution  and  ultimately

helps to avoid getting trapped at local optima. It is an operator that introduces diversity in

the population whenever the population tends to become homogeneous due to repeated

use of reproduction and crossover operators.

In the multi-objective real-time VRPs, a mutation operation applied to a given solution

can result in one of the following: (1) Change the order of customers in a route encoded

by the solution. (2) Reduce the number of routes encoded by the solution, by merging two

routes together; or (3) Increase the number of routes encoded by the solution by splitting

a single route into two routes.

6.2.2.2.1 Merge Routes operation

The merge operation, takes two routes from the solution and merges them into one new

route. This operation is used to reduce the number of vehicles used by the solution.

Figure 6.9 - An example of merge route operation

A candidate solution to an instance of the VRP is encoded using an array of node

objects (node object is an object that has two properties, customer number and waiting

time at customer), and based on the permutation representation.

A route is a sequence of node objects in the array of node objects. The first node in the

route corresponds to the first location of the route (which can be either the depot, denoted

as 0, or a customer). The last node of the route must be a depot, since all routes end at the

depot.

In the example illustrated in Figure 6.9, two routes were randomly selected, 0-12-6-14-

8-0 and 0-13-7-1-0. Next, the two routes are merged into a single route, 0-12-6-14-8-13-

7-1-0. This is done by removing the end location of the first route and the start location of
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the second route, which in both cases is the depot, and concatenating the second route to

the first route. Next, the second route is removed from the solution's array of node

objects, and the first route in the solution's array of objects is replaced with the new

merged route.

The merge route operation can be applied to two routes, only if the first location of the

second route is the depot, and there is no truck driving from the deport to the second

location of the route. Otherwise, the solution will not reflect real-life information.

6.2.2.2.2 Swap operation

A  candidate  solution  to  an  instance  of  the  VRP,  is  encoded  using  an  array  of  node

objects (node object is an object that has two properties, customer number and waiting

time at customer), and based on the permutation representation. The swap operation

randomly selects two node objects from the nodes objects array, and swaps them. The

swap operation is used to change the order of customers in a route. It can also decrease

the number of routes in the solution, as illustrated later in this chapter.

An example of the swap operation is illustrated in Figure 6.10.

Figure 6.10 - An example of a swap operation

The solution shown in Figure 6.10 contains four routes. Two of the routes are 0-12-6-

14-8-0 and 9-10-11-5-0. Two node objects are randomly selected, the first node object

corresponds to customer 12, and the seconds corresponds to customer 5. As stated before,

the swap operation interchanges the two randomly selected node objects, so the result is

two new routes, 0-5-6-14-8-0 and 9-10-11-12-0.

An example of the swap operation is illustrated in Figure 6.10.
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Figure 6.11 - An example of a swap operation that decreases the number of routes

The solution shown in Figure 6.11 contains two routes, 0-1-2-3-4-0 and 0-5-0. Two

node objects are randomly selected, the first node object corresponds to the last location

in the first route (the depot), and the seconds corresponds to customer 5. After swapping

the two randomly selected node objects, the result is two new routes, 0-1-2-3-4-5-0 and

0-0. The second route, 0-0, is an empty route, since there are no customers to visit in the

route. Therefore, this route should be removed from the solution, and we are left with

only one route, instead of two.

If by swapping two node objects, the new solution does not reflect real-life information

(a vehicle driving from customer i to customer j is no longer present in the solution), the

swapping is not allowed.

6.2.2.2.3 Split Routes operation

The split operation, takes one route from the solution and splits it into two new routes.

This operation is used to increase the number of vehicles used by the solution.

Figure 6.12 - An example of split route operation

Since a candidate solution to an instance of the VRP is encoded using an array of node

objects (node object is an object that has two properties, customer number and waiting

time at customer), splitting a route into two routes is a simple operation – randomly select
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a node object from the node objects array, and insert two nodes that represent depots after

it.

In the example illustrated in Figure 6.12, there are four routes, 0-2-4-3-0, 0-6-8-0, 9-10-

5-0 and 0-7-1-0. A node object has to be randomly selected; in the example the selected

node object corresponds to customer 6. Two node objects, each represents a depot, are

inserted after the selected node object. The result is two near routes, 0-6-0 and 0-8-0.

If the selected node object represents the depot, the result of the split operation may be

an empty route, which will have to be removed from the solution.

Mutation may cause a vehicle to exceed its capacity. When this happens, and to

guarantee that the interpretation yields a valid solution, we split the route that exceeds

capacity into several ones. An example illustrates this adjustment: assume that the

original route 0-1-2-3-4-5-6-0 causes the vehicle to exceed its capacity at node 4. When

this situation occurs, the itinerary is divided in two sections: 0-1-2-3-0 and 0-4-5-6-0, and

a new vehicle is added to the solution. If necessary, further divisions can be made in the

second section. Notice that these changes only occur at the interpretation level, and

therefore the information codified in the chromosome is not altered.

6.2.2.2.4 Change Wait Time operation

The last  operation  described  is  the  change  wait  time  operation.  The  change  wait  time

operation changes the waiting time for a randomly chosen customer, to a random value in

the range of 0 to T, where T is a predefined value. This operation is much simpler than

the previously described operations.

A  candidate  solution  to  an  instance  of  the  VRP  must  specify,  among  others,  waiting

times at each customer. Node object is an object that has two properties, customer

number and waiting time at customer. A solution to the multi-objective real-time VRPs is

encoded using an array of node objects, and based on the permutation representation.

The change wait time operation is therefore a simple operation. Randomly select a node

object, N, from the node objects array. For the randomly selected node object N, change

the waiting time property to a random value in the range of 0 to T.

When this operation is applied on a solution, it does not change its feasibility.
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6.3. Summary

Evolutionary Algorithms belong to the Evolutionary Computation field of study

concerned with computational methods inspired by the process and mechanisms of

biological evolution. Evolutionary Algorithms share properties of adaptation through an

iterative process that accumulates and amplifies beneficial variation through trial and

error. Candidate solutions represent members of a virtual population striving to survive in

an environment defined by a problem specific objective function. In each case, the

evolutionary process refines the adaptive fit of the population of candidate solutions in

the environment, typically using surrogates for the mechanisms of evolution such as

genetic recombination and mutation.

In this chapter three evolutionary algorithms for solving the real-time multi objective

vehicle routing problem were presented. The first two algorithms are genetic algorithms.

These  algorithms  encode  a  potential  solution  to  a  specific  problem  on  a  simple

chromosome-like data structure and apply recombination operators to these structures in

order to preserve critical information.

The first genetic algorithm is an improved version of the vector evaluated genetic

algorithm (VEGA). The VEGA concept is that, for a problem with NumObj objectives,

NumObj sub-populations of size PopSize/NumObj each would be generated (assuming a

total population size of PopSize). Each sub-population uses only one of the NumObj

objective functions for fitness assignment. The proportionate selection operator is used to

generate the mating pool. These sub-populations are then shuffled together to obtain a

new population of size PopSize,  on  which  the  GA  would  apply  the  crossover  and

mutation operators in the usual way. In each generation the set of not-dominated

solutions is added to the optimal solutions set, from which non-dominated solutions are

removed.

The second genetic algorithm is the SPEA2 algorithm. SPEA2 is actually an extension

of an elitism MOEA called “The Strength Pareto Evolution Algorithm” – SPEA.The

distinctive feature of SPEA2 lies in the elitism-preserved operation. An external set (archive) is

created  for  storing  primarily  non-dominated  solutions.  It  is  then  combined  with  the

current population to form the next archive that is then used to create offspring for the

next generation. The size of the archive is fixed. It can be set to be equal to the population
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size.  Therefore,  two special  situations  exist  when  filling  solutions  in  the  archive.  If  the

number of non-dominated solutions is smaller than the archive size, other dominated

solutions taken from the remainder part of the population are filled in. This selection is

carried out according to a fitness value, specifically defined for SPEA. In other words, the

individual fitness value defined for a solution x, is the total of the SPEA-defined strengths

of solutions which dominate x, plus a density value.

The second situation happens when the number of non-dominated solutions is over the

archive size. In this case, a truncation operator is applied. For that operator, the solution

which  has  the  smallest  distance  to  the  other  solutions  will  be  removed  from  the  set.  If

solutions have the same minimum distance, the second nearest distance will be

considered, and so forth. This is called the k-th nearest distance rule.

The third revolutionary algorithm is a combination of the vector evaluated technique

and artifical bee colony algorithm. In the ABC algorithm, the colony of artificial bees

consists of three groups of bees: (1) employed bees - bees that are currently exploiting a

food source; (2) onlookers - bees that are waiting in the hive for the employed bees to

share information about the food sources; and (3) scouts - bees that are searching for new

food sources in the neighborhood of the hive. The ABC algorithm starts by assigning

each employed bee to a randomly generated solution. Next, in each iteration, each

employed bee, using a neighborhood operator, finds a new food source near its assigned

food source. The nectar amount of the new food source is then evaluated. If the amount

of nectar in the new food source is higher than the amount of nectar in the old one, then

the older source is replaced by the newer one. Next, the nectar information of the food

sources is shared with the onlookers. The onlooker chooses a food source according to

the probability proportional to the quality of that food source. Roulette wheel selection is

the  usual  method.  Therefore,  good  food  sources,  as  opposed  to  bad  ones,  attract  more

onlooker bees. Subsequently, using a neighborhood operator, each onlooker finds a food

source near its selected food source and calculates its nectar amount. Then, for each old

food source, the best food source among all the food sources near the old one is

determined. The employed bee associated with the old food source is assigned to the best

food source and abandons the old one if the best food source is better than the old food

source.  A food  source  is  also  abandoned  by  an  employed  bee  if  the  quality  of  the  food

source has not improved in the course of a predetermined and limited number of
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successive iterations. The employed bees then become scouts and randomly search for

new food source. After a scout finds a new food source, it again becomes an employed

bee. After each employed bee is assigned to a food source, another iteration of the ABC

algorithm begins. The iterative process is repeated until a stopping condition is met.

Next, solutions representation was described. A candidate solution to an instance of the

VRP must specify the number of vehicles required, the partition of the demands through

all these vehicles, the delivery order for each route as well as waiting time at each

customer. Let a node object define an object that has two properties, customer number

and waiting time at customer. A solution to the multi-objective real-time VRPs can be

encoded using an array of node objects, and based on the permutation representation. A

solution contains several routes, each one of them composed by an ordered subset of the

costumers. All demands belonging to the problem being solved must be present in one of

the routes.

Methods such as crossover and mutations, which are needed for diversity purposes,

were also described. Crossover and mutation are the genetic operators used in the general

GAs. In ABCs only neighborhood operators, which are equivalent to GA's mutation

operators, are used. Solutions used in a specific problem have their own characteristics,

and some particular crossover operators are needed.
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7. Fitness Functions and Algorithm Convergence
 A fitness function is a particular type of objective function that is used to summarize, as

a single figure of merit, how close a given design solution is to achieving the set aims.

In the field of evolutionary algorithms, at each iteration, the idea is to delete the n worst

design solutions, and to breed n new  ones  out  of  the  best  design  solutions.  Therefore,

each design solution needs to be awarded a figure of merit to indicate how close it came

to meeting the overall specifications, which is generated by applying the fitness function

to the test, or simulation, results obtained from that solution.

Evolutionary algorithms work mainly due to the effort involved in designing a workable

fitness function. Even though it is no longer the human designer, but the computer, that

comes  up  with  the  final  design,  it  is  the  human  designer  who  has  to  design  the  fitness

function. If this is designed wrongly, the algorithm will either converge to an

inappropriate solution, or will have difficulty converging at all.

Furthermore, the fitness function must not only correlate closely with the designer's

goal; it must also be computed quickly. Speed of execution is very important, as a typical

evolutionary algorithm must be iterated many times in order to produce a usable result for

a non-trivial problem.

In some cases, fitness approximation may be appropriate, especially if (1) the fitness

computation time of a single solution is extremely high, (2) a precise model for fitness

computation is missing or (3) the fitness function is uncertain or noisy.

Two main classes of fitness functions exist: one where the fitness function does not

change, as in optimizing a fixed function or testing with a fixed set of test cases; and one

where the fitness function is mutable, as in niche differentiation or co-evolving the set of

test cases.

In both the improved VEGA algorithm and the VE-ABC algorithm, in each generation,

a number of sub-populations are generated by performing proportional selection

according to each objective function in turn. Thus, for a problem with q objectives, q sub-

populations of size N/q each would be generated, assuming a population size of N. This

means that for each objective function, a corresponding fitness function has to be

designed and calculated for all proposed solutions.
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In  the  case  of  the  SPEA2  algorithm,  in  order  to  avoid  the  situation  that  individuals

dominated by the same archive members have identical fitness values, each individual is

assigned a strength value S(i), representing the number of solutions it dominates. A

solution dominates another solution if for all objective functions, the first solution is

better than the second solution. Therefore, in order to compute S(i), for each individual,

the values of all objective functions need to be computed.

Five objective functions are addressed in this study; four of which rely on travel time:

(1) minimizing the total travel time; (2) minimizing the difference of travel times among

the routes of the solution, (3) Minimizing the total dissatisfaction of all customers and (4)

Minimizing the arrival time of the latest vehicle.

Due to the stochastic nature of travel time, in order to get an accurate value, or accurate

fitness functions for the previously mentioned objectives, simulation has to be used.

Simulation works by traveling paths. Each path is traveled w times, when w is pre-

determined by the user. The traveling times are stored in a sorted array. The returned

traveling time, C,  returned  by  the  simulation  is  defined  as  the  traveling  time  stored  in

entry w·  of  the  array.  Assuming  that =0.95, this means that in 95% of all cases, the

actual traveling time will be shorter than C. A higher value of w will usually increase the

accuracy of the result obtained from the simulation.

Usually, a high value of w results in accurate results of the simulation; however, it

dramatically increases the running time of the algorithm. For example, in this study,

values of w=1 and w=1000 were used. Using the improved VEGA algorithm, several

problems were solved. The average running time when w=1 was about 20 minutes, and

when w=1000, about 8 hours. In this study, it will be shown that w=1 (fitness

approximation) can be used without affecting the algorithm performance (meaning that

for different values of w the algorithm converges to the same results).

7.1.1. Convergence

To validate this approach, a methodology normally adopted in the evolutionary multi-

objective optimization literature was used.

Using performance measures (or metrics) allows the assessment (in a quantitative way)

of an algorithm’s performance. For multi objective optimization problems, measures tend
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to focus on the objective domain as to the accuracy of the results. For this comparative

study, the two following metrics were implemented:

Two Set Coverage (SC): This metric was proposed by Zitzler et al. (2000), and it can

be termed as relative coverage comparison of two sets. Consider 'X  and ''X  as  two

competing sets of phenotype decision vectors. SC is defined as the mapping of the order

pair ', ''X X  to the interval 0,1 , which reflects the percentage of individuals in one set

( ''X ) dominated by the individuals of the other set ( 'X ). The mathematical definition of

this metric is shown in equation (7.1):

'' ''; ' ' : ' ''
( ', '')

''
a X a X a a

SC X X
X

    (7.1)

This definition implies that SC=1 when all points in 'X  dominate  or  are  equal  to  all

points in ''X . SC=0 implies the opposite. In general, ', ''SC X X  and '', 'SC X X  both

have to be considered due to set intersections not being empty. Of course, this metric can

be used for both spaces (objective function or decision variable space), but in this case, it

was applied to objective function space. It should be noted that knowledge of the PFtrue is

not required for this metric. This important property is the main reason for choosing this

metric.

Error Ratio (ER):  This  metric  was  proposed  by  Veldhuizen  (1999)  to  indicate  the

percentage of solutions in the known Pareto front, PFknown,  that  are not members of the

true Pareto front, PFtrue. In order to use this metric, it is essential that the researcher know

the PFtrue. The mathematical representation of this metric is shown in equation (7.2):

0

n

i
i

e
ER

n
      (7.2)

where n is the number of vectors in PFknown and ei is a 0 when the i vector is an element

of PFtrue or 1 if i is not an element. It should then be clear that ER=0 indicates an ideal
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behavior, meaning that the PFknown is  the  same as PFtrue; but when ER=1 indicates that

none of the points in PFknown are in PFtrue.

However, since PFtrue is  usually  not  known,  a  slightly  different  definition  of  the  error

ratio metric is presented. Given a set of non-dominated solutions, ND, (obtained from the

last iteration of the algorithm) and a known Pareto front, PFknown, the error ratio metric is

defined as the percentage of vectors in ND,  that  are not members of PFknown. Using the

formulation presented in (7.2), the new ER can be calculated, where n is the number of

vectors in ND and ei is a 0 when the i vector is an element of PFknown or 1 if i is  not an

element.

An evolutionary algorithm usually starts with a randomly generated first generation.

However, if the first generation is smartly generated, for example, by using results

obtained from a heuristic algorithm, then the genetic algorithm will converge to the

optimal solution much faster, and the result, assuming that the same parameters, such as

the number of generations, are kept, will be more accurate.

As stated before, the fitness evaluation procedure uses simulation, which works by

traveling paths. Each path is traveled w times, when a high value of w usually results in

accurate results of the simulation, and therefore, a more accurate fitness value is obtained.

It will be shown that w=1 can be used without affecting the algorithm performance

(meaning that  for different values of w the algorithm converges to the same results).  In

order to show that, 30 test problems were randomly generated, 10 with 50 customers,

another 10 with 100 customers, and the last 10 problems with 150 customers. In all test

problems, the number of time intervals is 24, and in each time interval the speed is within

the range of 80-120 KM/H. Each problem was solved 4 times using the improved VEGA

algorithm, twice with w=1 ("approximated" fitness evaluation) and twice with w=1000

("exact" fitness evaluation), while using only three objective functions: (1) minimizing

the total travel time; (2) minimizing the number of vehicles and (3) minimizing the

difference  of  travel  times  among  the  routes  of  the  solution.  The  VEGA  algorithm  was

chosen for test due to its simplicity. The VEGA algorithm is very similar to the original

GA, and therefore, there are no additional calculations and operations that may affect the

process of the algorithm. Only three objective functions were chosen, again, to reduce the

calculations of the algorithm, that may affect the convergence of the algorithm.
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7.1.2. Metrics Comparison Results

In this section, the results of the metrics comparison, using paired-samples t-tests are

reported. Throughout this section X’ refers to a solution obtained when w=1 and X’’ to a

solution obtained when w=1000. In evolutionary algorithms, since the way the first

generation was generated may change the algorithm's results, each comparison was

conducted twice, once using a randomly generated first population and the second using a

Savings based first population.

Eight paired-samples t-tests were conducted to compare the results of the two set

coverage metric (SC(X’,X’’) vs. SC(X’’,X’)). The results are listed in Table 7.1.

The results show that for problems with 50 and 100 customers, when the first generation

was randomly generated or Savings based, there is no significant difference in the scores

for SC(X’,X’’) and SC(X’’,X’). However, for problems with 150 customers, there is a

significant difference in the scores for SC(X’,X’’) and SC(X’’,X’). This indicates that on

average, 59% of the non-dominated solutions, when the first generation was randomly

generated, and 29% of the non-dominated solutions, when the first generation was

Savings based, obtained from the last iteration of the genetic algorithm, when w=1, are

dominated by the non-dominated solutions obtained when w=1000. In addition, 26% of

the non-dominated solutions, when the first generation was randomly generated, and 54%

of the non-dominated solutions, when the first generation was Savings based, obtained

when w=1000, are dominated by the non-dominated solutions obtained when w=1. From

the above, it can be concluded that for problems with 150, the results obtained when

w=1000 are better than the results obtained when w=1 when using a randomly generated

first generation. However, if the first generation is Savings based, then the results

obtained when w=1 are better than the results obtained when w=1000. Two paired-

samples t-tests, in which all groups of problems are combined into a single sample, show

that there is no significant difference in the scores for SC(X’,X’’) and SC(X’’,X’).
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SC(X’,X’’) SC(X’’,X’)
Problem Size M SD M SD t df Sig.

Randomly generated fist population

50 0.479 0.411 0.493 0.459 -0.112 39 0.911
100 0.349 0.447 0.397 0.447 -0.382 39 0.705
150 0.59 0.458 0.258 0.411 2.654 39 0.011
All 0.411 0.424 0.416 0.411 -0.064 119 0.949

Savings based first population
50 0.535 0.41 0.452 0.376 0.690 39 0.494

100 0.408 0.435 0.254 0.365 1.427 39 0.162
150 0.29 0.399 0.541 0.446 -2.199 39 0.034
All 0.473 0.447 0.389 0.446 1.235 119 0.219

Table 7.1 – A comparison of SC(X’,X’’) and SC(X’’,X’) using paired-samples t-tests

As with the results of the two set coverage metric, paired-samples t-tests were used to

check if there are any differences in the results of the error ratio metric for w=1 and for

w=1000. The results are listed in Table 7.2.

The  results  show  that  for  problems  with  50  customers,  when  the  first  generation  was

randomly generated or Savings based, there is no significant difference in the scores for

ER(X’) and ER(X’’). This is also the case for problems with 100 customers, when the first

generation was randomly generated and for problems with 150 customers, when the first

generation is Savings based.

However, for problems with 150 customers, when the first generation was randomly

generated and for problems with 100 customers, when the first generation is Savings

based, there is a significant difference in the scores for ER(X’) and ER(X’’). This means

that for problems with 150 customers, when the first generation was randomly generated,

on average 55% of the non-dominated solutions do not belong to PFknown when w=1,

whereas when w=1000, 80% of the non-dominated solutions do not belong to PFknown.

Similarly, for problems with 100 customers, when the first generation is Savings based,

on average 49% of the non-dominated solutions do not belong to PFknown when w=1 but

when w=1000, 73% of the non-dominated solutions do not belong to PFknown.

This means that for problems with 150 customers, when the first generation was

randomly generated and for problems with 100 customers, when the first generation was

Savings based, the chance for a non-dominated solution that belongs to PFknown is twice

as high when w=1 than when w=1000.
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The results of the paired-samples t-tests, in which all groups of problems are combined

into a single sample, show that there is no significant difference in the scores for ER(X’)

and ER(X’’).

SC(X’,X’’) SC(X’’,X’)
Problem Size M SD M SD t df Sig.

Randomly generated fist population

50 0.852 0.248 0.759 0.308 1.402 39 0.169
100 0.734 0.383 0.589 0.458 1.416 39 0.165
150 0.552 0.481 0.803 0.353 -2.535 39 0.015
All 0.712 0.399 0.717 0.389 -0.088 119 0.93

Savings based first population
50 0.699 0.307 0.74 0.306 -0.532 39 0.598

100 0.496 0.404 0.731 0.342 -2.592 39 0.013
150 0.695 0.343 0.585 0.427 1.229 39 0.227
All 0.63 0.364 0.686 0.366 -1.092 119 0.277

Table 7.2 - A comparison of ER(X’) and ER(X’’) using paired-samples t-tests

From the results, it can be concluded that the results obtained from the genetic

algorithm, whether using w=1 or w=1000, are the same, regardless of the problem size

and the method of the generation of the first population.

7.1.3. TOPSIS Comparison

In most cases, when solving a multi-objective optimization problem, the result is a set

of non-dominated solution, from which the decision maker has to choose his preferred

alternative. In an automated environment, a mechanism for choosing a preferred solution

from a set of non-dominated solutions needs to be implemented. A number of techniques

for automating the process of choosing have been developed. Among the various

methods, one can find the Max-Min method, Min-Max method, Compromise

Programming, ELECTRE Method and more (Masud & Ravindran, 2008). In this paper,

the TOPSIS method was used as a means for choosing a preferred alternative.

TOPSIS (technique for order preference by similarity to ideal solution) was originally

proposed by Hwang and Yoon (1981) for the MCSP. TOPSIS operates on the principle

that the preferred solution (alternative) should simultaneously be closest to the ideal

solution and farthest from the negative-ideal solution. TOPSIS does not require the

specification of a value (utility) function, but it assumes the existence of monotonically

increasing value (utility) function for each (benefit) criterion. The method uses an index
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that combines the closeness of an alternative to the positive-ideal solution with its

remoteness from the negative-ideal solution. The alternative maximizing this index value

is the preferred alternative.

In the previous section, it has been shown that a set of non-dominated solutions

obtained when w=1  is  as  good  as  a  set  of  non-dominated  solutions  obtained  when

w=1000.  However,  this  does  not  mean  that  the  same  results  exist  in  both  sets,  and

therefore, it is not guaranteed that the TOPSIS method selects similar results from both

sets.  In  this  section,  a  comparison  of  the  results  of  TOPSIS  method  applied  on  the

solution sets obtained from the 30 test cases is presented.

A solution is a set of three results, each for every objective function. The analysis

begins with correlation analysis. Correlation analysis is used to check whether or not

there is a correlation between the three values of a result. As with the metrics comparison,

each comparison is conducted twice, once using a randomly generated first population,

and the second using a Savings based first population.

Eight Pearson product-moment correlation coefficients were computed to assess the

relationship between the results of the first objective function and the second objective

function. The results are listed in Table 7.3.

w=1 w=1000
Problem Size Obj. 2 Obj. 2

Randomly generated first population
50 Obj. 1 r=0.94, n=40, p=0 Obj. 1 r=0.954, n=40, p=0
100 Obj. 1 r=0.973, n=40, p=0 Obj. 1 r=0.986, n=40, p=0
150 Obj. 1 r=0.909, n=40, p=0 Obj. 1 r=0.944, n=40, p=0
All Obj. 1 r=0.81, n=120, p=0 Obj. 1 r=0.785, n=120, p=0

Savings based first population
50 Obj. 1 r=0.835, n=40, p=0 Obj. 1 r=0.814, n=40, p=0
100 Obj. 1 r=0.82, n=40, p=0 Obj. 1 r=0.865, n=40, p=0
150 Obj. 1 r=0.281, n=40, p=0.079 Obj. 1 r=0.174, n=40, p=0.282
All Obj. 1 r=0.716, n=120, p=0 Obj. 1 r=0.716, n=120, p=0

Table 7.3 - Pearson product-moment correlation coefficients between the first and second

objectives, for w=1 and w=1000

For problems with 50, 100 and 150 customers, whether the first generation was

randomly created or Savings based, a positive correlation between the two variables was

found for solutions obtained when w=1 and for solutions obtained when w=1000. Since a

strong positive correlation exists between the two variables, a correlation analysis was
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performed, using the results of all problems as a single result. The results show a positive

correlation when using w=1 and when using w=1000.

A second set of eight Pearson product-moment correlation coefficients was computed to

assess the relationship between the results of the first objective function and the third

objective function. All tests, whether the first generation was randomly created or

Savings based, show a negative correlation. However, since the third objective minimizes

the difference of travel times among the routes of the solution, and is defined by means of

standard deviation, and since the maximum value obtained for this objective is 0.05 when

w=1 and 0.009 when w=1000, it can be assumed that the value of the third objective is

always 0, and therefore, can be ignored in the analysis.

Since it has been shown that a correlation exists between the first and second objectives,

and that the third objective can be ignored, since it can be treated as zero, a paired t-test

can be used to compare the results obtained by using the TOPSIS method.

Eight paired-samples t-tests were conducted to compare the results obtained by using

the TOPSIS method when w=1 and when w=1000. The results are listed in Table 7.4.

All paired-samples t-tests show that there is no significant difference in the scores for

w=1 and for w=1000.

w=1 w=1000
Problem Size M SD M SD t df Sig.

Randomly generated fist population

50 31.2 10.6 30.9 10.2 0.429 39 0.67
100 72.1 28.8 70.9 26.3 0.899 39 0.374
150 76.3 15.8 79.1 14.2 -1.967 39 0.056
All 59.8 28.2 60.3 27.8 -0.676 119 0.5

Savings based first population
50 24.9 12.3 24.8 11.9 0.02 39 0.984

100 52.7 31.7 51.9 30.6 0.244 39 0.808
150 42.2 27.0 40.6 26.4 0.34 39 0.736
All 39.9 27.4 39.1 26.6 0.417 119 0.678

Table 7.4 - A comparison of TOPSIS results for w=1 and w=1000 using paired-samples t-tests

7.2. Travel time characteristics

The  previous  analysis  shows  that  it  is  possible  to  increase  the  running  time  of  the

algorithm by using an "approximated" fitness function, without influencing the accuracy

of the algorithm. The analysis was done using 30 randomly generated test problems, with
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50, 100 and 150 customers, all having 24 time intervals, when for each time interval the

travel speed ranges from 80-120 KM/H, with empiric probability. However, travel time is

more likely to be lognormally distributed because (1) the positive skew shape (i.e., right

skewed) is more suitable for travel time description; that is, a higher probability exists for

long travel time than for short travel time, and (2) the range [0, ) of the distribution is

more natural than a truncated normal distribution (because negative travel times are

impossible) (Hadas & Ceder, 2008).

For  that  reason,  a  second  set  of  tests  was  conducted,  this  time  using  Solomon’s

instances. Since Solomon’s instances were designed for TWVRP, a simple modification

had to be done. Solomon’s instances provide the location of each customer, assuming that

the travel speed is constant. Since this is not the case in this problem, time intervals were

added (24 of them) and for each time interval a lognormal random travel time function

was assigned for which =0.03 and =4.1 (theses values may change slightly between

time intervals) and therefore the average traveling speed is 60 KM/H. In order to decrease

running time, Solomon’s instances were solved using the improved VEGA algorithm,

using 500 generations and population size of 200, once when w=1 and next when w=100.

The results of the test are presented in Table 7.5.

w=1 w=100

Problem

Size
Problem

Type M SD M SD t df Sig.

Randomly generated first population

C1 3.35 0.03 3.34 0.04 0.641 35 0.526
C2 2.47 0.09 2.45 0.1 0.561 31 0.579
R1 4.14 0.86 3.63 0.22 3.912 47 0
R2 3.15 0.28 3.15 0.22 -0.059 43 0.953

RC1 3.96 0.24 3.84 0.21 2.492 31 0.018

25

RC2 2.57 0.13 2.59 0.15 -0.69 31 0.495
C1 6.6 0.22 6.61 0.44 -0.133 35 0.895
C2 5.4 0.55 4.94 0.1 4.616 31 0
R1 11.83 1.21 11.4 1.45 1.466 47 0.149
R2 11.63 0.67 11.54 0.94 0.538 43 0.593

RC1 9.46 0.69 9.27 0.78 0.931 31 0.395

50

RC2 8.6 0.72 8.46 0.41 1.027 31 0.312
C1 16.44 1.01 16.35 0.94 0.467 35 0.643
C2 14.4 1.00 13.85 0.94 2.292 31 0.029
R1 38.94 2.38 37.43 1.85 3.462 47 0.001
R2 35.74 3.01 32.37 2.71 5.224 43 0

100

RC1 32.88 2.45 30.99 0.29 3.514 31 0.001
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w=1 w=100

Problem

Size
Problem

Type M SD M SD t df Sig.

RC2 28.41 3.29 24.76 1.96 5.604 31 0
Savings based first population

C1 3.38 0.07 3.37 0.07 0.453 35 0.653
C2 2.38 0.09 2.35 0.08 1.544 31 0.133
R1 4.36 1.07 3.66 0.28 4.413 47 0
R2 3.32 0.3 3.23 0.31 1.427 43 0.161

RC1 4.11 0.26 4 0.19 1.971 31 0.058

25

RC2 2.51 0.1 2.54 0.1 -1.275 31 0.212
C1 6.4 0.08 6.34 0.01 4.128 35 0
C2 5.34 0.85 4.96 0.26 2.42 31 0.022
R1 12.56 1.26 11.21 0.8 6.353 47 0
R2 11.91 0.6 11.27 0.63 5.16 43 0

RC1 9.17 0.63 8.89 0.22 2.412 31 0.022

50

RC2 8.61 0.67 8.42 0.53 1.258 31 0.218
C1 14.92 0.63 14.53 0.08 4.253 35 0
C2 12.33 0.57 11.45 0.54 6.486 31 0
R1 38.88 2.42 37.81 1.78 2.466 47 0.017
R2 35.76 2.19 32.16 2.27 7.837 43 0

RC1 29.82 2.17 28.54 1.34 2.894 31 0.007

100

RC2 28.21 4.07 24.22 1.74 4.836 31 0

Table 7.5 - A comparison of TOPSIS results for w=1 and w=100 using paired-samples t-tests

As  seen  from  the  results,  for  problems  with  25  and  50  customers,  when  using  a

randomly generated first generation, and for problems with 25 customers when using a

Savings based first generation, there is no difference in the TOPSIS results when using

w=1 and w=100. However, for problems with 100 customers, when using a randomly

generated first generation, and for problems with 50 and 100 customers when using a

Savings based first generation, a better solution is obtained when w=100 compared to the

solution obtained when w=1.

As stated before, in order to decrease running time, Solomon’s instances were solved

using the improved VEGA algorithm, using 500 generations and population size of 200.

It is known that the number of generations used by an evolutionary algorithm may affect

its  results.  Generally,  a high number of generations gives the algorithm more chance to

converge towards the optimal solution than a low number of generations. However, in

real-time applications, the number of generations is bounded by the time given to the

algorithm to come up with a solution. Therefore, the algorithm was tested again, this time

with a stopping condition of 30 minutes running time, instead of the 500 generations.

Results for problems with 100 customers are reported in Table 7.6.
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w=1 w=100
Problem Size Problem Type M SD M SD t df Sig.

Randomly generated first generation
100 C1 14.85 0.67 16.43 0.81 -8.883 35 0
100 C2 12.64 1.58 14.19 0.74 -4.814 31 0
100 R1 33.67 2.08 39.61 1.69 -14.488 47 0
100 R2 32.77 4.57 38.62 2.94 -7.073 43 0
100 RC1 30.14 2.23 33.22 1.07 -7.905 31 0
100 RC2 27.13 4.42 28.14 2.49 -0.979 31 0.335

Savings based first generation
100 C1 14.56 0.4 14.5 0.45 -0.411 35 0.684
100 C2 11.72 1.31 12.15 2.03 0.985 31 0.332
100 R1 34.44 2.56 40.09 1.53 -13.098 47 0
100 R2 31.25 2.79 39.58 2.31 -16.071 43 0
100 RC1 27.29 1.12 30.16 2.11 -6.568 31 0
100 RC2 24.92 4.21 26.27 1.4 -1.841 31 0.075

Table 7.6 - A comparison of TOPSIS results for w=1 and w=100 using paired-samples t-tests

As it can be seen from Table 7.6, when using a randomly generated first generation, the

results obtained by the algorithm when w=1 were better than the results obtained when

w=100, except for RC2, in which no significant differences were found between the

results. When using a Savings based first generation, the results obtained by the algorithm

when w=1 were better than the results obtained when w=100, for problems R1, R2 and

RC1, while for problems C1, C2 and RC2, no significant differences were found between

the results.

Furthermore, an analysis of the convergence of the algorithm shows, that when w=100,

the best solution is reached after almost 30 minutes of running, while the same solution is

found much earlier when w=1. To illustrate these finding, the analysis of problems C101,

C201, R101, R201, RC101 and RC201 is given for both randomly generated and Savings

based first generation.

For problem C101, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 16.52, objective two equals 10 and objective three equals 0,

after 422 generations (see Figure 7.1).  Since  the  algorithm,  when w=100, was able to

generate 486 generations in 30 minutes, this means that the algorithm’s best solution was

reached after 26 minutes and 10 seconds. For the same problem, C101, when w=1, the

algorithm reached the best solution after 326 generations out of 7916 generations that

were generated during 30 minutes, namely, after one minute and ten seconds. Moreover,
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when using w=1, the algorithm was able to reach a better solution than the best solution,

in which objective one equals 19.95, objective two equals 10 and objective three equals 0,

after 7394 generations, i.e., after 28 minutes and one second.
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Figure 7.1 - Algorithm convergence when w=1 (left) and w=100 (right) for problem C101 during the

first 30 minutes

For problem C201, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 13.23, objective two equals 3 and objective three equals 0,

after 422 generations (see Figure 7.2).  Since  the  algorithm,  when w=100, was able to

generate 464 generations in 30 minutes, this means that the algorithm's best solution was

reached after 27 minutes and 17 seconds. For the same problem, C201, when w=1, the

algorithm reached the best solution after 733 generations out of 7397 generations that

were generated during 30 minutes, i.e., after 9 minutes and ten seconds. Furthermore,

when using w=1, the algorithm was able to reach a better solution than the best solution,

in which objective one equals 10.54, objective two equals 3 and objective three equals 0,

after 1799 generations, i.e., after 22 minutes and 30 seconds.
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Figure 7.2 - Algorithm convergence when w=1 (left) and w=100 (right) for problem C201 during the

first 30 minutes

For problem R101, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 38.72, objective two equals 8 and objective three equals 0,

after 345 generations (see Figure 7.3).  Since  the  algorithm,  when w=100, was able to

generate 365 generations in 30 minutes, this means that the algorithm's best solution was

reached after 28 minutes and 21 seconds. For the same problem, R101, when w=1, the

algorithm reached the best solution after 309 generations out of 1692 generations that

were generated during 30 minutes, i.e., after 5 minutes and 28 seconds. Furthermore,

when using w=1, the algorithm was able to reach a better solution than the best solution,

in which objective one equals 32.07, objective two equals 8 and objective three equals 0,

after 1052 generations, i.e., after 18 minutes and 39 seconds.
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Figure 7.3 - Algorithm convergence when w=1 (left) and w=100 (right) for problem R101 during the

first 30 minutes
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For problem R201, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 39.15, objective two equals 2 and objective three equals

0.00047, after 207 generations (see Figure 7.4). Since the algorithm, when w=100, was

able to generate 215 generations in 30 minutes, this means that the algorithm’s best

solution was reached after 28 minutes and 53 seconds. For the same problem, R201,

when w=1, the algorithm reached the best solution after 154 generations out of 1246

generation that were generated during 30 minutes, i.e., after 3 minutes and 42 seconds.

Furthermore, when using w=1, the algorithm was able to reach a better solution than the

best solution, in which objective one equals 32.91, objective two equals 2 and objective

three equals 0.00008, after 785 generations, or after 18 minutes and 54 seconds.
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Figure 7.4 - Algorithm convergence when w=1 (left) and w=100 (right) for problem R201 during the

first 30 minutes

For problem RC101, when w=100 the algorithm, using TOPSIS, reached its best

solution in which objective one equals 30.53, objective two equals 10 and objective three

equals 0, after 321 generations (see Figure 7.5). Since the algorithm, when w=100, was

able to generate 327 generations in 30 minutes, this means that the algorithm’s best

solution was reached after 29 minutes and 26 seconds. For the same problem, RC101,

when w=1, the algorithm reached the best solution after 432 generations out of 806

generation that were generated during 30 minutes, i.e., after 16 minutes and 4 seconds.

Furthermore, when using w=1, the algorithm was able to reach a better solution than the

best solution, in which objective one equals 28.52, objective two equals 10 and objective

three equals 0, after 704 generations, or after 26 minutes and 12 seconds.
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Figure 7.5 - Algorithm convergence when w=1 (left) and w=100 (right) for problem RC101 during

the first 30 minutes

For problem RC201, when w=100 the algorithm, using TOPSIS, reached its best

solution in which objective one equals 26.99, objective two equals 2 and objective three

equals 0.00001, after 307 generations (see Figure 7.6). Since the algorithm, when w=100,

was able to generate 323 generations in 30 minutes, this means that the algorithm’s best

solution was reached after 28 minutes and 30 seconds. For the same problem, RC201,

when w=1, the algorithm reached the best solution after 425 generations out of 979

generation that were generated during 30 minutes, i.e., after 13 minutes and one second.

Furthermore, when using w=1, the algorithm was able to reach a better solution than the

best solution, in which objective one equals 24.22, objective two equals 2 and objective

three equals 0, after 967 generations, or after 29 minutes and 37 seconds.
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Figure 7.6 - Algorithm convergence when w=1 (left) and w=100 (right) for problem RC201 during

the first 30 minutes
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For problem C101, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 13.92, objective two equals 10 and objective three equals 0,

after one generation (see Figure 7.7). Since the algorithm, when w=100, was able to

generate 513 generations in 30 minutes, this means that the algorithm’s best solution was

reached after 0 minutes and 0 seconds. For the same problem, C101, when w=1, the

algorithm reached the best solution after 1 generation out of 7747 generations that were

generated during 30 minutes, after 0 minutes and 0 seconds.
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Figure 7.7 - Algorithm convergence when w=1 (left) and w=100 (right) for problem C101 during the

first 30 minutes

For problem C201, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 10.89, objective two equals 3 and objective three equals 0,

after 494 generations (see Figure 7.8).  Since  the  algorithm,  when w=100, was able to

generate 500 generations in 30 minutes, this means that the algorithm’s best solution was

reached after 29 minutes and 38 seconds. For the same problem, C201, when w=1, the

algorithm didn't reach the best solution after 2569 generations that were generated during

30 minutes.
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Figure 7.8 - Algorithm convergence when w=1 (left) and w=100 (right) for problem C201 during the

first 30 minutes

For problem R101, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 38.07, objective two equals 8 and objective three equals 0,

after 371 generations (see Figure 7.9).  Since  the  algorithm,  when w=100, was able to

generate 380 generations in 30 minutes, this means that the algorithm’s best solution was

reached after 29 minutes and 17 seconds. For the same problem, R101, when w=1, the

algorithm reached the best solution after 362 generations out of 1812 generation that were

generated during 30 minutes, or after 5 minutes and 59 seconds. Furthermore, when using

w=1,  the  algorithm  was  able  to  reach  a  better  solution  than  the  best  solution,  in  which

objective one equals 30.04, objective two equals 8 and objective three equals 0, after

1706 generations, i.e., after 28 minutes and 14 seconds.
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Figure 7.9 - Algorithm convergence when w=1 (left) and w=100 (right) for problem R101 during the

first 30 minutes
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For problem R201, when w=100 the algorithm, using TOPSIS, reached its best solution

in which objective one equals 37.9, objective two equals 2 and objective three equals

0.00007, after 175 generations (see Figure 7.10). Since the algorithm, when w=100, was

able to generate 177 generations in 30 minutes, this means that the algorithm’s best

solution was reached after 29 minutes and 14 seconds. For the same problem, R201,

when w=1, the algorithm reached the best solution after 162 generations out of 1308

generation that were generated during 30 minutes, or after 3 minutes and 51 seconds.

Furthermore, when using w=1, the algorithm was able to reach a better solution than the

best solution, in which objective one equals 33.61, objective two equals 2 and objective

three equals 0.00009, after 874 generations, or after 20 minutes and two seconds.
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Figure 7.10 - Algorithm convergence when w=1 (left) and w=100 (right) for problem R201 during

the first 30 minutes

For problem RC101, when w=100 the algorithm, using TOPSIS, reached its best

solution in which objective one equals 28.47, objective two equals 9 and objective three

equals 0, after 358 generations (see Figure 7.11). Since the algorithm, when w=100, was

able to generate 362 generations in 30 minutes, this means that the algorithm's best

solution was reached after 29 minutes and 40 seconds. For the same problem, RC201,

when w=1, the algorithm reached the best solution after 798 generations out of 1164

generations that were generated during 30 minutes, i.e., after 20 minutes and 34 seconds.

Furthermore, when using w=1, the algorithm was able to reach a better solution than the

best solution, in which objective one equals 25.93, objective two equals 9 and objective

three equals 0, after 1099 generations, or after 28 minutes and 19 seconds.
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Figure 7.11 - Algorithm convergence when w=1 (left) and w=100 (right) for problem RC101 during

the first 30 minutes

For problem RC201, when w=100 the algorithm, using TOPSIS, reached its best

solution in which objective one equals 26.95, objective two equals 2 and objective three

equals 0.00002, after 343 generations (see Figure 7.12). Since the algorithm, when

w=100, was able to generate 363 generations in 30 minutes, this means that the

algorithm's best solution was reached after 28 minutes and 20 seconds. For the same

problem, RC201, when w=1,  the  algorithm  reached  the  best  solution  after  314

generations out of 1057 generations that were generated during 30 minutes, or after 8

minutes and 54 seconds. Furthermore, when using w=1, the algorithm was able to reach a

better solution than the best solution, in which objective one equals 21.69, objective two

equals 2 and objective three equals 0, after 930 generations, i.e., after 26 minutes and 23

seconds.
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Figure 7.12 - Algorithm convergence when w=1 (left) and w=100 (right) for problem RC201 during

the first 30 minutes

7.3. Summary

A fitness function is a particular type of objective function that is used to summarize, as

a single figure of merit, how close a given design solution is to achieving the set aims.

In the field of evolutionary algorithms, at each iteration, the idea is to delete the n worst

design solutions, and to breed n new  ones  from  the  best  design  solutions.  Each  design

solution, therefore, needs to be awarded a figure of merit, to indicate how close it came to

meeting the overall specification, and this is generated by applying the fitness function to

the test, or simulation, results obtained from that solution.

In some cases, fitness approximation may be appropriate, especially if (1) the fitness

computation time of a single solution is extremely high, (2) a precise model for fitness

computation is missing or (3) the fitness function is uncertain or noisy.

In all three algorithms presented, the fitnesses of all five objective functions have to be

calculated. Due to the stochastic nature of travel time, in order to get an accurate value, or

accurate fitness functions, simulation has to be used. Simulation is a time consuming

process.

It was shown that it is possible to increase the running time of the algorithm by using an

"approximated" fitness function, without influencing the accuracy of the algorithm. A fast

algorithm is necessary when coping with real-time problems, which is the final goal of

this study.
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Usually, when solving a multi-objective optimization problem, the result is a set of non-

dominated solutions, from which the decision maker has to choose his preferred

alternative. Since the final goal is to create an automated algorithm for solving a real-time

multi-objective vehicle routing problem, the TOPSIS method, a mechanism for choosing

a preferred solution from a set of non-dominated solutions, has been implemented. It was

shown  that  there  is  no  difference  in  the  quality  of  the  results  obtained  using  the

"approximated" or "accurate" methods, but this does not mean that the same results exist

in both sets, and therefore it is not guaranteed that the TOPSIS method selects similar

results from both sets. It was shown, by means of correlation testing and paired-samples

t-tests, that the solutions selected by the TOPSIS methods are similar regardless of the

method used for calculating the fitness functions.

Since travel time is more likely to be lognormally distributed, a second set of tests was

done, using Solomon’s instances. Using 500 generations and a population of 200

chromosomes, the result of the improved VEGA algorithm showed that for problems with

a large number of chromosomes (50 and 100 customers) using w=100 results was a better

solution than when using w=1, while for problems with a small number of customers (25

and  50),  no  significant  difference  was  found.  Since  it  is  known  that  the  number  of

generations used by a genetic algorithm may affect its results, and since in real-time

applications, the number of generations is bounded by the time given to the algorithm to

come  up  with  a  solution,  the  algorithm  was  tested  again,  this  time  when  the  stopping

condition was 30 minutes of running time, instead of the 500 generations. In all cases, the

result obtained by the algorithm when w=1 are better than the results obtained when

w=100. Furthermore, when w=1, the algorithm converges to the best solution much faster

than when w=100.
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8. Setting Wait Time Parameter
 The first objective function considered in chapter 3.3.1 is minimizing the total travel

time, and is defined as

1

0 0 1 0

0 0 1

min max ' , ' ' '

max ,

S

S

tN N M
t S mt
ij j j j ij

i j m t

N N M T
t S mt
ij j j j ij

i j m t t

Z C TW t ST WT x

C TW t ST WT x
      (8.1)

where the total traveling time is composed from two parts, (1) the known traveling time,
1

0 0 1 0
max ' , ' ' '

StN N M
t S mt
ij j j j ij

i j m t
C TW t ST WT x , and (2) the unknown traveling time,

0 0 1

max ,
S

N N M T
t S mt
ij j j j ij

i j m t t

C TW t ST WT x .

If by leaving node i at time t a vehicle reaches node j before its time window's start time

(meaning t S
ij jt C TW , where ijC  is the traveling time for traveling from node i to node

j and S
jTW  customer j's time window's start time), then the vehicle has to wait until the

beginning of the time window in order to start serving. Otherwise, it starts serving when

it arrives. The time between the time the vehicle left node i towards node j, denoted as t,

and the time it starts serving node j can be formulated as max ,t S
ij jC TW t . If node j is a

customer, then both service time at customer j, jST , and waiting time at customer j, jWT ,

have to be added to the traveling time. But if node j is the depot, then both service time,

jST , and waiting time, jWT , are equal to 0. Therefore, the time passed since a vehicle left

node i towards node j and the time it left node j can be defined as

max ,t S
ij j j jC TW t ST WT .

For each edge , : , ,e E i j i j V i j , there exists a decision variable mt
ijx ,

defined as 1 if edge e was traveled at time t by vehicle m, and otherwise it is defined as 0.
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Multiplying the above notation, max ,t S
ij j j jC TW t ST WT , by the decision variable

mt
ijx , gives us the time passed since vehicle m left node i towards node j at time t and the

time it left node j, if such a vehicle exists, otherwise it is 0.

Let’s refer to the time passed since vehicle m left node i towards node j at time t and the

time  it  left  node j multiplied by the decision variable,

max ,t S mt
ij j j j ijC TW t ST WT x , as the true travel time from node i to node j. By

summing all possible true travel times,
0 0 1 0

max ,
N N M T

t S mt
ij j j j ij

i j m t

C TW t ST WT x ,

we get the total travel time, which we want to minimize.

The total travel time can be decomposed into two parts, the known travel time and the

unknown travel  time.  If  the  planning  time, st ,  is  not  equal  to  0,  then  we are  not  at  the

beginning of the day, and some vehicles have already been sent to customers. In this case,

information regarding traveled edges, travel costs, service time and waiting time is

already known for every edge traveled and for every customer visited before st .

Let 'tijC  donate the known cost from traveling from node i to node j at time t, where

st t . Similarly, let 'mt
ijx  denote the known decision variable, defined as 1 if vehicle m

traveled from node i to node j at time t. where st t ,  and  0,  otherwise.  The  known

traveled cost can be defined as
1

0 0 1 0
max ' , ' ' '

StN N M
t S mt
ij j j j ij

i j m t
C TW t ST WT x .

The unknown traveling cost can be defined as

0 0 1

max ,
S

N N M T
t S mt
ij j j j ij

i j m t t

C TW t ST WT x , therefore, the total traveling cost is the

sum  of  the  known  traveling  cost  and  the  unknown  traveling  cost,
1

0 0 1 0

0 0 1

max ' , ' ' '

max ,

S

S
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t S mt
ij j j j ij

i j m t
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C TW t ST WT x



- 171 -

The cost function, t
ijC ,  and  service  times, iST ,  as  well  as  customers’  time  windows,

STW  and ETW , are either determined by environmental conditions (such as road

conditions, traffic jams, etc.) or by the customer (service time). However, waiting time,

defined as the time the vehicle left from customer i to customer j, 2t ,  minus the time a

vehicle finished serving customer i, 1t  ( 2 1t t ), is totally determined by the algorithm.

Therefore, the question is what is the best time range from which the algorithm should

select the waiting time so it will converge to the optimal solution as fast as possible (less

iterations), .in respect to all objective functions.

In  order  to  find  the  best  waiting  time  range,  several  tests  were  conducted,  using

Solomon’s C101, R101 and RC101 instances for 25, 50 and 100 customers. Each

instance was solved 50 times by the algorithm, 10 times with waiting time in the range of

0 to 5 minutes, 10 times with waiting time in the range of 0 to 10, 10 times with waiting

time in the range of 0 to 15,  10 times with waiting time in the range of 0 to 20 and 10

times with waiting time in the range of 0 to 25. All instances were solved with respect to

all objective functions described in chapter 3.3. Since Solomon’s instances were designed

for TWVRP, a simple modification had to be done. Solomon’s instances provide the

location of each customer, assuming that the travel speed is constant. Since this is not the

case in this problem, time intervals were added (24 of them) and for each time interval a

lognormal random travel time function was assigned for which =0.03 and =4.1 (these

values may slightly change between time interval) and therefore, the average traveling

speed is 60 KM/H. In order to decrease running time, Solomon's instances were solved

using the improved VEGA algorithm, using 500 generations and population size of 200.

For each instance, in order to predict the value of each objective function as a function

of the waiting time range, linear regression was used. The results are summarized in

Table 8.1.

Coefficients
Time range in minutesProblem Objective Constant 0-10 0-15 0-20 0-25

2R

Travel Time 22.573 1.933 5.037 5.804 4.57 0.473
Number Of Vehicles 3.667 1 0.667 0.667 0.333 0.206

Tour Balance 5.4 1.537 2.848 -0.26 0.79 0.225
Customer’s Dissatisfaction 0.7 0.088 1.911 1.872 0.999 0.809

C101-25

Arrival Time of Last Vehicle 19.206 -0.234 1.15 0.85 0.85 0.467
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Coefficients
Time range in minutesProblem Objective Constant 0-10 0-15 0-20 0-25

2R

Travel Time 10.664 1.734 1.228 3.993 4.273 0.711
Number Of Vehicles 8.333 -1 -1.333 0 0 0.183

Tour Balance 0.386 0.179 0.348 -0.123 0.093 0.149
Customer’s Dissatisfaction 1.471 0.334 0.752 1.475 0.702 0.507

R101-25

Arrival Time of Last Vehicle 10.711 0.261 0.528 0.795 0.584 0.371
Travel Time 11.633 -0.267 3.227 3.473 6.366 0.933

Number Of Vehicles 7 -2.333 -1.667 0.667 1 0.718
Tour Balance 0.512 2.577 -0.157 -0.131 -0.096 0.328

Customer’s Dissatisfaction 0.982 -0.343 1.072 1.201 1.156 0.609
RC101-25

Arrival Time of Last Vehicle 10.933 1.289 0.489 1.033 0.639 0.178
Travel Time 52.256 2.26 11.049 17.622 14.061 0.474

Number Of Vehicles 7.667 0.333 3.333 4 1 0.3
Tour Balance 6.814 -4.465 -4.349 -5.079 -2.461 0.363

Customer’s Dissatisfaction 4.599 9.201 4.373 6.423 4.491 0.33
C101-50

Arrival Time of Last Vehicle 19.6 2.806 2.461 2.744 3.322 0.761
Travel Time 29.101 0.799 9.831 8.339 13.843 0.777

Number Of Vehicles 21 -1.667 6 2.333 4.667 0.515
Tour Balance 0.094 0.028 -0.005 0.03 0.022 0.159

Customer’s Dissatisfaction 2.376 0.495 0.515 0.813 1.699 0.316
R101-50

Arrival Time of Last Vehicle 10.65 0.245 0.439 0.45 0.672 0.402
Travel Time 36.339 -0.301 2.265 6.928 12.679 0.714

Number Of Vehicles 26.667 -4333 -3.667 -1 -1 0.233
Tour Balance 0.076 0.045 0.054 0.064 0.027 0.497

Customer’s Dissatisfaction 1.191 0.9 1.181 2.09 1.703 0.533
RC101-50

Arrival Time of Last Vehicle 10.861 0.578 0.489 0.678 0.861 0.592
Travel Time 328.573 39.44 14.238 65.881 37.271 0.762

Number Of Vehicles 67.333 6.333 -1.333 6.667 1 0.674
Tour Balance 0.147 -0.067 -0.053 -0.068 0.073 0.584

Customer’s Dissatisfaction 3.552 -0.266 1.659 0.734 1.117 0.226
C101-100

Arrival Time of Last Vehicle 20.8 -0.317 1.205 0.577 -0.095 0.363
Travel Time 120.922 10.309 18.671 29.994 40.312 0.903

Number Of Vehicles 94 1 -0.667 0 0.333 0.027
Tour Balance 0.015 0.002 0.003 0.006 0.007 0.612

Customer’s Dissatisfaction 0.018 0.213 0.881 1.529 2.355 0.976
R101-100

Arrival Time of Last Vehicle 10.239 0.134 0.317 0.517 0.995 0.9
Travel Time 119.993 -5.981 24.803 25.344 40.512 0.967

Number Of Vehicles 93.333 -11.333 1 -2.667 0 0.629
Tour Balance 0.016 0.008 -0.001 0.002 0.004 0.343

Customer’s Dissatisfaction 0.064 0.306 -0.037 0.23 0.473 0.706
RC101-100

Arrival Time of Last Vehicle 10.222 0.411 0.25 0.406 0.844 0.911

Table 8.1 – Linear regression results

Based on the results of the linear regression the expected value of each objective for

every instance was calculated for the different waiting time ranges. The results are

summarized in Table 8.2.
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2R 0-5 0-10 0-15 0-20 0-25
Travel Time 0.473 22.573 24.506 27.61 28.377 27.143

Number of Vehicles 0.206 3.667 4.667 4.334 4.334 4
StdDev 0.225 5.4 6.937 8.24 5.14 6.19

DSF 0.809 0.7 0.788 2.611 2.572 1.699
25/C101

Latest Arrival 0.467 19.206 18.972 20.356 20.056 20.056
Travel Time 0.711 10.644 12.378 11.872 14.577 14.917

Number of Vehicles 0.183 8.333 7.333 7 8.333 8.333
StdDev 0.149 0.386 0.565 0.734 0.509 0.479

DSF 0.507 1.471 1.805 2.223 2.946 2.173
25/R101

Latest Arrival 0.371 10.711 10.972 11.239 11.506 11.295
Travel Time 0.933 11.633 11.357 14.86 15.106 17.999

Number of Vehicles 0.718 7 4.667 8.667 7.667 9
StdDev 0.328 0.512 3.089 0.335 0.381 0.416

DSF 0.609 0.982 0.639 2.054 2.183 2.138
25/RC101

Latest Arrival 0.178 10.933 12.222 11.422 11.966 11.572
Travel Time 0.474 52.256 54.516 63.305 69.878 66.317

Number of Vehicles 0.301 7.667 8 11 11.667 8.667
StdDev 0.363 6.814 2.349 2.465 1.735 4.353

DSF 0.331 4.599 13.799 8.972 11.022 9.09
50/C101

Latest Arrival 0.761 19.6 22.406 22.061 22.344 22.922
Travel Time 0.777 29.101 29.9 38.932 37.5 42.945

Number of Vehicles 0.515 21 19.333 27 23.333 25.667
StdDev 0.159 0.094 0.121 0.089 0.124 0.116

DSF 0.316 2.376 2.871 2.891 3.189 4.075
50/R101

Latest Arrival 0.402 10.65 10.894 11.089 11.1 11.322
Travel Time 0.714 36.339 36.039 38.604 43.267 49.018

Number of Vehicles 0.233 26.667 22.333 23 23.667 25.667
StdDev 0.497 0.076 0.121 0.131 0.14 0.104

DSF 0.533 1.191 2.091 2.372 3.281 2.894
50/RC101

Latest Arrival 0.592 10.861 11.439 11.35 11.539 11.722
Travel Time 0.762 328.573 368.013 342.81 394.454 365.843

Number of Vehicles 0.674 67.333 73.667 66 74 68.333
StdDev 0.584 0.147 0.081 0.094 0.079 0.22

DSF 0.226 3.552 3.286 5.211 4.286 4.729
100/C101

Latest Arrival 0.363 20.8 20.484 22.006 21.378 20.706
Travel Time 0.903 120.922 131.23 139.592 150.916 161.233

Number of Vehicles 0.027 94 95 93.333 94 94.333
StdDev 0.612 0.015 0.016 0.018 0.02 0.022

DSF 0.976 0.018 0.231 0.899 1.546 2.373
100/R101

Latest Arrival 0.9 10.239 10.372 10.556 10.756 11.233
Travel Time 0.967 119.933 113.952 144.735 145.277 160.444

Number of Vehicles 0.629 93.333 82 97.333 90.667 93.333
StdDev 0.343 0.016 0.025 0.016 0.019 0.02

DSF 0.706 0.064 0.37 0.027 0.294 0.537
100/RC101

Latest Arrival 0.911 10.222 10.633 10.472 10.628 11.067

Table 8.2 - Predicted values of objective functions, based on regression

As  can  see  from  the  results,  25  out  of  45  objectives  (nine  problems,  each  with  five

objectives) are best obtained when the waiting time is in the range of 0 to 5 minutes. 11
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out  of  45  objectives  are  best  obtained  when the  waiting  time is  in  the  range  of  0  to  10

minutes. 6 out of 45 objectives are best obtained when the waiting time is in the range of

0 to 15 minutes. 3 out of 45 objectives are best obtained when the waiting time is in the

range of 0 to 20 minutes. None of the objectives are best obtained when the waiting time

is in the range of 0 to 25 minutes. However, half of functions found by the linear

regression (23 out of 45), have an R2 value lower than 0.75. This means that the value of

half of the objective functions calculated based on the functions found by the regression,

are probably not close to the true value expected.

As a result, averages comparison was done and used as well. The results are

summarized in Table 8.3.

0-5 0-10 0-15 0-20 0-25
Travel Time 22.573 24.506 27.611 28.378 27.144

Number of Vehicles 3.667 4.667 4.333 4.333 4.000
StdDev 5.400 6.936 8.248 5.140 6.189

DSF 0.700 0.787 2.610 2.571 1.698
25/C101

Latest Arrival 19.206 18.972 20.355 20.055 20.056
Travel Time 10.644 12.378 11.872 14.577 14.917

Number of Vehicles 8.333 7.333 7.000 8.333 8.333
StdDev 0.386 0.565 0.733 0.509 0.479

DSF 1.471 1.804 2.223 2.946 2.173
25/R101

Latest Arrival 10.711 10.972 11.239 11.506 11.295
Travel Time 11.633 11.366 14.860 15.106 17.999

Number of Vehicles 7.000 4.667 8.667 7.667 9.000
StdDev 0.512 3.089 0.355 0.381 0.416

DSF 0.982 0.639 2.053 2.183 2.138
25/RC101

Latest Arrival 10.933 12.222 11.422 11.967 11.572
Travel Time 52.256 54.516 63.305 69.877 66.317

Number of Vehicles 7.667 8.000 11.000 11.667 8.667
StdDev 6.814 2.349 2.465 1.735 4.353

DSF 4.599 13.799 8.972 11.022 9.090
50/C101

Latest Arrival 19.600 22.406 22.061 22.344 22.922
Travel Time 29.101 29.900 38.932 37.500 42.945

Number of Vehicles 21.000 19.333 27.000 23.333 25.667
StdDev 0.094 0.121 0.089 0.124 0.116

DSF 2.376 2.871 2.891 3.189 4.075
50/R101

Latest Arrival 10.650 10.894 11.089 11.100 11.322
Travel Time 36.339 36.039 38.604 43.267 49.018

Number of Vehicles 26.667 22.333 23.000 23.667 25.667
StdDev 0.076 0.121 0.131 0.140 0.104

DSF 1.191 2.091 2.372 3.281 2.894
50/RC101

Latest Arrival 10.861 11.439 11.350 11.539 11.722
Travel Time 328.573 368.013 342.810 394.454 365.843

Number of Vehicles 67.333 73.667 66.000 74.000 68.333
StdDev 0.147 0.081 0.094 0.079 0.220

100/C101

DSF 3.552 3.286 5.211 4.286 4.729
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0-5 0-10 0-15 0-20 0-25
Latest Arrival 20.800 20.484 22.006 21.378 20.706
Travel Time 120.922 131.230 139.592 150.916 161.233

Number of Vehicles 94.000 95.000 93.333 94.000 94.333
StdDev 0.015 0.016 0.018 0.020 0.022

DSF 0.018 0.231 0.899 1.546 2.373
100/R101

Latest Arrival 10.239 10.372 10.556 10.756 11.233
Travel Time 119.933 113.952 144.735 145.277 160.444

Number of Vehicles 93.333 82.000 97.333 90.667 93.333
StdDev 0.016 0.025 0.016 0.019 0.020

DSF 0.064 0.370 0.027 0.294 0.537
100/RC101

Latest Arrival 10.222 10.633 10.472 10.628 11.067

Table 8.3 – Average values of objective functions, based on experiments

The results are similar to the results obtained by using the functions found by the linear

regression. 25 out of 45 objectives (nine problems, each with five objectives) are best

obtained when the waiting time is in the range of 0 to 5 minutes. 11 out of 45 objectives

are best  obtained when the waiting time is in the range of 0 to 10 minutes.  6 out of 45

objectives are best  obtained when the waiting time is in the range of 0 to 15 minutes.  3

out  of  45  objectives  are  best  obtained  when the  waiting  time is  in  the  range  of  0  to  20

minutes. None of the objectives are best obtained when the waiting time is in the range of

0 to 25 minutes.

When comparing averages, statistical tests usually have to be done in order to verify

that there is a difference between two populations. In this case, such tests were not

conducted for the following reasons:

1. Assuming that there is a difference between two populations. In this case, it is

obvious that the population with the lower average value is better (assuming

minimization).

2. On the other hand, if there is no difference between the two populations, then there is

no advantage or disadvantage in choosing the population with the lower average.

It can therefore be concluded that in all cases, it is possible , to choose the population

whose results have a lower average value.

8.1. Summary

This chapter deals with the waiting time parameter. Waiting time is the time a vehicle

waits after it has finished serving a customer before it starts driving to the next customer.

Service time is determined by the algorithm, and can be any value in a pre-determined
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range. Therefore, the question is, What is the best time range from which the algorithm

should  select  the  waiting  time  so  it  will  converge  to  the  optimal  solution  as  fast  as

possible (less iterations), with respect to all objective functions?

In  order  to  find  the  best  waiting  time range,  a  set  of  tests  was  done  using  Solomon’s

C101, R101 and RC101 instances for 25, 50 and 100 customers, each solved 10 times.

Based on the results of the test instances, for each instance, in order to predict the value

of each objective function as a function of the waiting time range, linear regression was

used. The results of the linear regression showed that in more than half of the cases, the

best results were obtained when the waiting time range was between 0 and 5 minutes.

However, half of functions found by the linear regression (23 out of 45), have a value of

R2 < 0.75. This means that the value of half of the objective functions calculated based on

the functions found by the regression, are probably not close to the true value expected,

so therefore, a comparison of averages was conducted and used as well.

The results of the averages comparison were similar to the results obtained by using the

functions found by the linear regression. More than half of the objectives (25 out of 45)

are best obtained when the waiting time is in the range of 0 to 5 minutes.

Based on the results obtained using linear regression and the results obtained using

comparison of averages, it is best to use a waiting time within the range of 0 to 5 minutes.



- 177 -

9. The Customer Satisfaction Function
In  a  traditional  VRPTW,  a  feasible  solution  must  satisfy  all  time  windows.  When  a

customer is served within its specified time window, the supplier’s service level is

satisfactory; otherwise, it is not satisfactory. Therefore, a customer’s satisfaction level

(which is equal to the supplier’s service level) can be described using a binary variable.

The customer satisfaction level is defined as 1 if the service time falls within the specified

time window; otherwise, it is defined as 0. The service level function of the customer is

described in Figure 9.1.

Figure 9.1 – The service level function of a hard time window

Time windows may sometimes be violated for economic and operational reasons.

However, certain bounds on the violation (earliness or lateness) exist, which a customer

can endure. The following two concepts are introduced to describe these bounds.

Let iEET  denote endurable earliness time, the earliest service time that customer i can

endure when a service starts earlier than S
iTW , and let iELT  denote endurable lateness

time, the latest service time that customer i can endure when a service starts later

than E
iTW .

The following example describes the relationship of S
iTW , E

iTW , iEET  and iELT .  A

factory needs some kind of raw material for its daily production. Every day, the factory
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opens at 8:00 and production starts at 10:00. The raw material is sent from an upstream

supplier and the process of unloading the raw material requires 30 minutes. The factory

specifies its preferred delivery time window to be [8:30, 9:00], because materials

delivered within that time window can be directly moved to the workshop without any

tardiness. However, the factory is not operating in a just-in-time mode; the delivery can

be a little earlier or later than the specified time window. A reasonable combination of

EET and ELT could be [8:00, 9:30]. If the materials are delivered within [8:00, 8:30],

instead of being moved directly into the workshop, they must be stored in the warehouse

because of limited space in the workshop. Of course, this is not what the manager of the

factory wishes to see, but it is acceptable. If the materials are delivered within [9:00,

9:30], no inventories have to be held; however, this requires that the execution of the

production plan will have a higher accuracy, which will reduce the robustness of the

production operations in the factory. Since the factory opens at 8:00, deliveries before

8:00 must wait outside the factory. When production procedure starts at 10:00, delivery

after 9:30 is totally unacceptable because of the 30-minutes unloading process. Simply

put, although the manager of the factory will be happiest to be served within [8:30, 9:00],

the manager will also be reasonably satisfied if served within [8:00, 8:30] or [9:00, 9:30];

however, the result of this is that the customer’s satisfaction declines, and deliveries made

before 8:00 or after 9:30 are not acceptable. Similar scenarios also appear in dial-a-ride

problems.

Figure 9.2 – The service level function of fuzzy time windows
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As discussed, the service may start outside the time window ,S E
i iTW TW , and the

bounds of acceptable earliness and lateness are described by iEET  and iELT ,

respectively. Obviously, the earliness and lateness are highly related to the quality of the

supplier's service. The customer's level of satisfaction response to a given service time

will no longer simply be “good” or “bad”; but between “good” and “bad”. For example,

the customer may say, “it’s alright” to be served within , S
i iEET TW  or ,E

i iTW ELT .

In either case, the service level cannot be described only by two states (0 or 1).

For problems involving personal human emotions, fuzzy set theory is a strong tool.

Intuitively, with the concepts of iEET  and iELT , the supplier’s service level for each

customer can be described by a fuzzy membership function:
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when in most recent research, if t is defined as

i
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t EETf t
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    (8.3)

and ig t  is defined as

( ) i
i E

i i

ELT tg t
ELT TW

    (8.4)

However, since customer’s satisfaction level, as a function of the deviation from the

customer’s time window, usually cannot be described as a linear function, the following

function, which better describes customer's satisfaction, is used.
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Assuming that each customer has his/her own satisfaction function, iS t , and that the

service provider assigns as an importance factor, i , to each customer that states how

important it is to satisfy customer i compared to all other customers, the maximizing

customers’ satisfaction objective can be described as

1

0 0 1 0
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mt mt
i ji ji

tn N M T
t t

i ji ij
i j m t t t

Z S t C tx xC (8.7)

As stated before, customer satisfaction or dissatisfaction (which is equal to one minus

satisfaction value) involves personal human emotions. The satisfaction function may be

decomposed to several functions; each focusing on a different factor which influences the

overall satisfaction. For example, if a supplier is late and workers have to stay after their

regular working hours, one function may consider physiological aspects, such as the

dissatisfaction due to workers' loss of family time. Another function may consider

financial aspects, such as workers' overtime salary. While there might be several

satisfaction (or dissatisfaction) functions, in this study, one satisfaction function is

considered, which includes all satisfaction aspects as perceived by the customers.

In order to get an impression of the possible values of  and , 38 customers (people),

were asked, using questionnaires, about their general satisfaction value when a supplier

or other service provider arrives earlier than expected, between 30 minutes to four hours,

with 30 minute intervals. Similarly, they were asked for their general satisfaction value



- 181 -

when a supplier or other service provider arrives later than expected, from 30 minutes to

four hours, with 30 minute intervals.

Based on the results of the questionnaires, the following analysis was conducted for

each customer.

1. Each customer is assigned to a satisfaction function, using curve fitting. CenterSpace

Software’s NMath numerical library provides object-oriented components for

mathematical, engineering, scientific, and financial applications on the .NET

platform. One of the components provided by CenterSpace Software’s NMath

numerical library is the PolynomialLeastSquares class, which performs a least

squares fit of a Polynomial to a set of points. The data provided by each customer was

used as an input to the PolynomialLeastSquares, which was used to calculate five

degree polynomial curve fitting functions (for both earliness and lateness).

2. For each customer, using the five degree polynomials computed, the values of 400

sample points were collected. These sample points represent the satisfaction value of

the customer for supplier earliness and lateness, from 0 minutes up to 4 hours, with

0.01 minutes time interval.

3. Since the functions obtained are not presented in the form of the functions described

in (8.5) and (8.6), , the least squares method is used in order to find a function in the

form of (8.5) and (8.6) for each customer, which best approximates the customer’s

satisfaction functions. In order to approximate the customer's satisfaction functions,

each sample point was evaluated using the 4 / 4t  satisfaction function, with

various values of , starting with (-1000) and ending with 1000, with an interval of

0.1. The value of each sample point obtained from the satisfaction function is

subtracted from the value obtained from the five degree polynomial. The difference

value  is  then  squared,  and  all  the  squared  values  are  summed.  The  value  of  is

chosen so that the sum of all squared differences is minimal.

The functions calculated for all 38 customers based on the questionnaires are presented

in Figure 9.3 and Figure 9.4.
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Figure 9.3 – Various satisfaction functions for supplier earliness
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Figure 9.4 – Various satisfaction functions for supplier lateness

The results can be summarized as follows:

1. For earliness, 6 out of the 38 customers feel indifferent to the supplier being early.

This means that although the supplier arrives much earlier than expected, the

customer's satisfaction is minimally influenced.

2. For earliness, for 6 out of the 38 customers, the customer's satisfaction correlates

linearly with the supplier being early.

3. For earliness, 18 out of the 38 customers are sensitive to the supplier being early. This

means that their satisfaction level declines dramatically when the supplier arrives

earlier than expected.
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4. For lateness, for 1 out of the 38 customers, the customer's satisfaction changed

linearly, and correlates with the supplier being late.

5. For lateness, 34 out of the 38 customers are sensitive to the supplier being late. This

means that their satisfaction level declines dramatically when the supplier arrives

later than expected.

9.1. Summary

In  a  traditional  VRPTW,  a  feasible  solution  must  satisfy  all  time  windows.  When  a

customer is served within his/her specified time window, the supplier’s service level is

satisfactory  or  equal  to  1;  otherwise,  the  service  is  not  satisfactory  or  equal  to  0.  Time

windows may sometimes be violated for economic and operational reasons. However,

certain bounds exist on the violation (earliness or lateness) that a customer can endure.

Obviously, the earliness and lateness are closely related to the supplier service level, and

therefore, the service level cannot be described by only two states (0 or 1).

To get an impression of how the service level, known as customer's satisfaction,

changes as a function of bounds on the violation (earliness or lateness), 38 customers,

using questionnaires, were asked for their overall satisfaction value when a supplier or

other service provider arrives within 30 minutes to four hours, with 30 minutes intervals,

earlier than expected. Similarly, they were asked for their overall satisfaction value when

a supplier or other service provider arrives 30 minutes to four hours, in 30 minutes

intervals, later than expected.

Each customer, based on the results of his questionnaire, was assigned a satisfaction

function. From these functions, it can be concluded that most customers are sensitive to

suppliers being either early or late, and their satisfaction level declines dramatically when

the supplier arrives earlier/later than expected.



- 188 -

10. Case Study
In previous chapters, the vehicle routing problem has been described and various

algorithms based on exact methods; heuristics and meta-heuristics have been reviewed.

The real-time multi-objective vehicle routing problem has been described and formulated,

and three evolutionary algorithms for solving it were also presented. Various tests using

randomly generated networks were done on the three algorithms, mainly for calibration

purposes.  These  tests  showed  that  each  of  the  three  algorithms  when  applied  on  a

randomly generated network converge towards a better solution.

The goal of this chapter is  to compare the results  of the three algorithms using a case

study. The case study is based on two networks that are based on a real-world

transportation network, including the locations of the depot, the customers and

information about travel time between the different customers. The case study is

performed using simulation.

10.1. Network

Two transportation networks, each based on real-file information, each with different

characteristics, were generated. Both networks are based on Israel’s road network.

The first network is based on the greater Tel-Aviv metropolitan area’s urban road

network. In this network, there are 45 customers (not including the depot).

“Mega Ba’ir” (Mega in the city) is a super-market chain store, with more than 80

branches (as reported in their  Internet site).  In order to make the network as realistic as

possible, the locations of each one of the 45 customers were chosen according to the

locations of the stores throughout the greater Tel-Aviv metropolitan area. Using “Google

Maps”, the shortest distance (based on actual network) between every two customers was

found.

Next, for each edge in the network, the traveling time for different times of the day was

collected (see 10.1.1).

Each customer is also associated with a time window. The time windows are randomly

generated, and are based on the following assumptions:
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1. The minimum possible time window start time, PSTW,  is  equal to 8:00 am plus the

travel time it takes to get from the depot to the customer (when leaving the depot at

8:00 am), assuming that the distance from the depot to the customer is known, and the

travel speed is 15 kilometers per hour.

2. The time window start time, STW, is based on the possible time windows start time,

and is a random value within the range of PSTW to PSTW+1.5 (plus one and a half

hour).

3. The time window end time, ETW, is based on the time windows start time, and is a

random value within the range of STW+0.5 to STW+3.

Each customer is also associated with a randomly generated demand, in the range of 10

to 50, similar to the demands used in Solomon's instances.
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Figure 10.1 – Locations of 45 customers in the greater Tel-Aviv metropolitan area

The second network is based on Israel's interurban road network. In this network, there

are 34 customers (not including the depot). The 34 customers are major cities in Israel.

Using “Google Maps”, the shortest distance (based on actual network) between every

two customers was found.

Next, for each day, the traveling times at different hours during the day were collected.

Each customer is also associated with a time window. The time windows are randomly

generated, and are based on the following assumptions:

1. The minimum possible time window start time, PSTW,  is  equal to 8:00 am plus the

travel time it takes to get from the depot to the customer (when leaving the depot at
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8:00 am), assuming that the distance from the depot to the customer is known, and the

travel speed is 70 kilometers per hour.

2. The time window start time, STW, is based on the possible time windows start time,

and is a random value within the range of PSTW to PSTW+1.5 (plus one and a half

hour).

3. The time window end time, ETW, is based on the time windows start time, and is a

random value within the range of STW+0.5 to STW+3.

Each customer is also associated with a randomly generated demand, in the range of 10

to 50, once again, similar to the demands used in Solomon's instances.
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Figure 10.2 - Locations of 39 customers in Israel

In each test problem, half of the customers are considered as customers with unknown

demands. The customers who are considered as customers with unknown demands are

the customers with the latest time window start time. Each unknown demand is revealed

to the simulation at least two hours before the beginning of the time window.
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10.1.1. Collecting Real-World Travel Time Information

The main problem in building a real-world network is knowing how travel time changes

during the day for each of the edges in the network. In recent years, "Google" started

providing real-time traffic information in their "Google Maps" service.

Figure 10.3 – "Google Maps" with real-time traffic information

When querying "Google Map" service for a route between two locations, it now

provides several possible routes, for each of which it provides its length, its average

travel time and its travel time in current traffic conditions. Based on this information, it is

possible to calculate the travel speed for each route based on its length and travel time.
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Figure 10.4 – "Google Maps" with shortest route between two points

In order to collect travel time information using Google maps service, a small

application has been written. This application works as follows:

1. A text file containing a list of routes is read by the application.

2. In turn each route queries “Google maps” service.

3. The result of each query is then analyzed, and the information is saved (time of day,

travel time and speed).

4. After all routes have been queried, the process starts from the beginning (stage 2).

Figure 10.5 – "Google Maps" with route travel time information

It was noticed that when querying "Google Map" service for a route between two

locations, at different times of the day, “Google Maps” may sometimes provide two or

more different routes. This happens because “Google Maps" considers traffic conditions

when calculating and suggesting a route. This behavior is problematic when collecting

data for statistical analysis. To avoid this problem, mid-points were used. Mid-points are
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points that must be included in the route. Using a mid-point guarantees that when there

are multiple possible routes between two points, the same route will be selected at any

time of the day.

The travel time information collecting application collected information during a period

of six months, for work days only (in order to avoid statistical bais caused by different

usage of the road network on work days and weekends). The application has been used

on six different computers, in order to increase the number of samples collected for each

edge.

10.2. The Time-Dependent Shortest Path Algorithm (TDSP)

This section describes the shortest path algorithm used to calculate the travel time

between two customers, assuming that the travel time depends upon the departure time

and the edges traveled. Development of a new efficient TDSP algorithm is not within the

scope of this research. Therefore, the TDSP algorithm described next can be replaced

with  any  other  TDSP  algorithm,  if  the  algorithm  is  more  efficient  than  the  proposed

TDSP algorithm.

The proposed algorithm is an extended version of the Dijkstra's algorithm, similar to the

one used by Malandraki (1986) to calculate TDSP with travel time functions.

Each customer is associated with two properties: (1) previous customer (node) and (2)

arrival time.

Dijkstra(G,s,t)

for all u in V-s set a(u)= , p(u)=Unknown

a(s)=t, p(s)=None

R={}

While R V

pick u from V, u is not in R with smallest a(u)

R=R+u

for all nodes v adjacent to u

if d(v)>d(u)+TravelTime(u,v,a(u))

d(v)=d(u)+ TravelTime (u,v,a(u))

p(v)=u
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The first stage of the Dijkstra's algorithm is an initialization stage. In the initialization

stage each node (u), except the first node, is assigned with the following values: (1)

previous customer (p(u)): unknown and (2) arrival time (a(u)): unknown, represented by

the value of positive infinity. The first node, which is the origin node is assigned with the

following values: (1) previous customer: none and (2) arrival time: the time that a vehicle

leaves the current node (t).

After the initialization stage, an iterative stage begins. In each iteration, a node is

selected. The selected node, u,  is  the node with the smallest  arrival  time, which has not

been selected earlier (not present in R) .Next, the selected node, u, is added to the set of

selected nodes, R. For all nodes v adjacent to u, the arrival time is calculated using the

TravelTime function described next. If the known arrival time of node v is higher than the

calculated arrival time, then the arrival time of node v is set to the calculated arrival time

and the value of the previous customer associated with node v is set to u. This process

continues until the set R contains all the nodes of the graph.

TravelTime(u,v,t)

TempLength = length of edge (u,v)

TimeIntervalIndex = t/ LengthOfTimeInterval

TimeLeft = LengthOfTimeInterval*(TimeIntervalIndex)-t

TravelTime = 0

Start loop

Speed = Get random speed of edge in time period = TimeIntervalIndex

TravelTime = TravelTime+TempLength/Speed

if TempLength/Speed <= TimeLeft then

exit loop and return TravelTime as edge travel time

TempLength = TempLength-(TimeLeft*Speed)

TimeIntervalIndex  = TimeIntervalIndex +1

TimeLeft = LengthOfTimeInterval

repeat loop
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Several aiding variables are used to calculate the travel time. The first variable is

TempLength. This variable contains the length of the traveled edge. The

TimeIntervalIndex variable represents the time interval which corresponds to start time, t

(in hours). LengthOfTimeInterval represents the duration, in hours, of a single time

interval. TimeIntervalIndex equal to the time interval corresponds to the start time;

therefore, TimeIntervalIndex+1 is the next time interval. Multiplying

TimeIntervalIndex+1 by LengthOfTimeInterval and subtracting the start time, t, from the

result, results in the time left from the start time, t,  until  the  end  of  the  current  time

interval, denoted by TimeLeft. The last aiding variable is TravelTime. This variable

contains the edge travel time as calculated by the function.

It is now possible to start calculating the travel time. The calculation of the travel time

begins with assigning the Speed variable with a random speed based on the statistical

information collected to edge (u,v), based upon the relationship described in 3.1.2, in the

time interval TimeIntervalIndex. TravelTime is then equal to the current TravelTime plus

TempLength divided by Speed.  This  means  that  the  travel  time  along  the  edge  (u,v)  is

equal  to  the  travel  time  known so  far,  plus  the  travel  time  of  the  untraveled  part  of  the

edge.  If  the  added  travel  time  is  equal  or  less  than  the  time  left  in  the  current  time

interval, the calculation is done, and the travel time is equal to TravelTime. Otherwise, it

means  that  the  edge  is  also  traveled  during  the  next  time  interval.  In  this  case,  a

correction has to be made, because the travel speed in the next time interval is not

necessarily equal to the travel speed in the current time interval. To correct the travel

time, the TempLength variable is assigned with the part of the edge needed to be traveled

in the next time interval; simultaneously, the TimeIntervalIndex is increased by 1. The

calculation can now be repeated until the TravelTime is fully calculated.

10.3. Assumptions

Several assumptions are made in simulation of a full-day operation as follows.

1. The planning period starts at 7:00 am and ends at 8:00 am. Planning period refers to

the time that the algorithm runs before the first vehicle has to leave the depot.

2. Service starts at 8:00 am, when the first vehicle leaves the depot, and ends when the

last vehicle returns to the depot.
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3. During the planning period, new information about customers’ demand is not

acceptable.

4. The workday is divided into 24 time intervals, each one hour long, starting at 0:00

am.

5. For each edge in the transportation network, the travel time is given using log-normal

distribution functions, for each time internal.

6. Information  about  real  travel  times  is  known  two  in  advance  (i.e.,  for  the  next  two

time intervals), and is updated 15 minutes before the beginning of the hour.

7. Every half an hour on the hour, new vehicles that have to leave the depot, leave the

depot to their first customers (this can happen due to new customers demands or due

to route splitting made by the algorithm).

8. New customers demands are acceptable only if there is at least one vehicle which is

not driving to the depot.

9. If all vehicles are either at the depot or driving to the depot, the algorithm stops

working (end of the case study).

10. The capacity of a single vehicle is equal to 200 units, as in Solomon's instances.

10.4. Simulation

In order to perform the case study, simulation was used. The simulation is based on two

processes running in parallel, that are exchanging information between each other. The

two processes are the algorithm process and the simulation process.

The algorithm process is an implementation of each of the three EAs described earlier

for exchanging information with the simulation process.

The steps of the algorithm process are as follows:

1. Generate set of initial solutions.

2. If there are pending operations in the operations queue, process the operations.

3. Generate the next set of solutions from current solutions.

4. If there are pending operations in the operations queue, process the operations.

5. If stop condition is met, finish, otherwise go to step 3.
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Operations are requests raised by the simulation process, and stored in a special shared

memory known as the operations queue, that have to be performed by the algorithm

process. The algorithm process can handle four such operations there:

1. Add customer – when the simulation process identifies a new demand request from a

new customer it raises an “Add customer” request. Adding a new customer means

that in all solutions generated by the algorithm, there should be a route which includes

the newly added customers. The simplest way to ensure that is by adding a new route

to each one of the solutions. This new route is a simple route which starts at the depot,

visits the newly added customer, and returns to the depot. Since various operations

are then applied on each of the solutions, the newly added customer will be quickly

managed in two other routes.

2. Remove customer - The simulation process keeps track of each of the vehicles that

has left the depot. Each vehicle that has left the depot can be in one of the following

two states, (1) "driving" and (2) "at the customer". When the vehicle changes its state

from "at the customer" to "driving", it means that the previous customer has already

been  served,  and  therefore  does  not  have  to  be  visited  anymore.  As  a  result,  the

previously visited customer has to be removed from all the solutions evolved by the

algorithm. The "remove customer" operation gets the number of the customer who

has to be removed and then removes it from all the solutions evolved by the

algorithm. It also makes sure that by removing the customer, there are no empty

routes left in any of the solutions.

3. Request route - When a vehicle has finished serving a customer it is required to

continue with its route toward the next customer. However, the vehicle, when leaving

the depot, is not given a route, but instead is given only the first customer in the route.

This is done since while the vehicle is driving towards its destination, the algorithm

continues improving the solutions, and by providing a route to the vehicle it is likely

to be given a route which will later be replaced with a better one. For that reason,

whenever a vehicle has to start driving towards its next destination, the simulation

process asks the algorithm process for the best routes known so far. From the routes,

the simulation process determines the vehicle's next destination.

4. Fix solutions based on current route - The simulation process supervises all available

vehicles. This is done using information provided by the algorithm process. When
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choosing routes using the "request routes" operation, it is necessary that the selected

routes  will  also  appear  in  all  other  solutions  evolved  by  the  algorithm.  The  "fix

solutions based on current routes" operation goes over each of the solutions evolved

by the algorithm, and makes any necessary changes according to the selected routes.

The simulation process simulates an entire workday. It does so by handling each of the

vehicles, collecting data about travel times and new customers’ demands. The simulation

process uses a timer to simulate an entire workday. A single timer event simulates one

second in the real-world. When a timer event is fired, a special time variable, called

SimTime, is increased by one second. Next, SimTime is compared against another variable

called NextDepartureTime. The NextDepartureTime variable represents the time when

new vehicles have to leave the depot on the new routes (usually, every half an hour on the

hour). If SimTime is greater than NextDepartureTime,  then  the  value  of

NextDepartureTime is recalculated. CalcTime is another variable maintained by the

simulation process. CalcTime is the time that an operation has to be performed, and it can

either be equal to the value of the NextDepartureTime variable, or to the earliest time that

an assigned vehicle (a vehicle currently located at a customer) has to leave the customer

to drive to another customer, whichever is earlier. If SimTime is equal or greater than

CalcTime, and there are no pending operations in the operations queue, the following is

done:

If CalcTime equals NextDepartureTime,  then the "Request  route",  "Assign routes" and

the "Fix solutions based on current route" operators are added to the operations queue.

Otherwise, for each assigned vehicle, the following is done:

1. If a vehicle is located at the customer, and according to SimTime, it has to leave and

start driving to the next customer, then "Request route", "Assign routes" and the "Fix

solutions based on current route" operators are added to the operations queue.

2. If a vehicle is driving to a customer, and according to SimTime it has arrived at the

customer, then the vehicle's number is added to the "change vehicle status from

driving to at customer" queue, and a "change vehicle status from driving to at

customer" operator is added to the operators queue.

3. If a vehicle is located at the depot and is due to leave the depot at SimTime, then the

vehicle's number is added to the "change vehicle status from waiting to driving"
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queue, and a "change vehicle status from waiting to queue" operator is added to the

operators queue.

As seen earlier, pending operations have to be processed before the simulation process

can continue. There are several operators stored in the operators queue, that can be

processed by the simulation process:

1. Assign route - the "assign routes" to vehicles operator is performed after a "request

routes" operator has been performed by the algorithm process. After receiving a set of

routes  from  the  algorithm  process,  the  simulation  process  must  make  sure  that  a

vehicle is assigned to each route in the set of routes received from the algorithm

process. Some of the routes already have vehicles assigned to them, while all the

other routes, which are new routes, have to be assigned to new vehicles.

2. Change status from driving to “at a customer” - The "change status from driving to at

customer operator" does the following for each vehicle whose status is changed from

"driving" to "at a customer": first, it changes the status of the vehicle from "driving"

to "at a customer", next the customer to whom the vehicle was driving is marked for

deletion by adding it to the "remove customers" queue, and the "remove customer"

and "fix solution based on current routes" are added to the operators queue.

3. Change status from waiting to driving– The "change status from waiting to driving" is

a simple operator which changes the status of a waiting vehicle from waiting at the

depot to driving.

4. New customer - The "new customer" operator gets a demand request from the user,

adds the new customer and its request to the "new customers" queue, and adds an

"add customer" operator to the operators queue.

5. Stop algorithm – The "stop algorithm" operator tells the algorithm process to stop. It

is called when all vehicles are back at the depot.

6. Update time interval – The "update time interval" operator gets travel time

information from the the algorithm process used and updated with it.
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Figure 10.6 – The relationsheep between the algorithm process and the simulation process

10.5. Strategy of the Case Study

In this case study, five strategies for constructing the routing plan are considered. The

five strategies are as follows:

1. The first strategy assumes that all information, including customers’ demands and

traveling time, is known in advanced. Based on this information, the algorithm runs

for  a  pre-defined  period  of  time,  after  that,  using  the  TOPSIS  mechanism,  a  set  of

routes is selected from the set of non-dominated solutions found by the algorithm. All

vehicles follow this set of routes.

2. The second strategy assumes that all information, including customer's demands and

traveling time, is known in advanced. Based on this information, the algorithm runs

for  a  pre-defined  period  of  time;  after  that,  using  the  TOPSIS  mechanism,  a  set  of

routes is selected from the set of non-dominated solutions found by the algorithm.

Vehicles start driving according to this set of routes, while the algorithm continues to

run. Whenever a vehicle arrives sat a customer, the customer is removed from all
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solutions evolved by the algorithm. Whenever a vehicle has to leave a customer and

drive to the next customer (or the depot), or at pre-defined time intervals, using the

TOPSIS mechanism, a new set of routes is selected from the set of non-dominated

solutions found by the algorithm. Driving vehicles are then rerouted according to the

new set of routes, and new vehicles are assigned as needed. This operation is repeated

until all customers have been served, and all vehicles have returned to the depot.

3. In the third strategy traveling time is unknown; however, all other information,

including customers’ demands, is known in advance. However, at pre-defined

intervals, traveling time information for the next pre-defined time period is revealed

to the algorithm. Based on this information, the algorithm runs for a pre-defined

period of time, after that, using the TOPSIS mechanism, a set of routes is selected

from the set of non-dominated solutions found by the algorithm. Vehicles start

driving according to this set of routes, while the algorithm continues to run.

Whenever a vehicle at a customer, the customer is removed from all solutions

evolved by the algorithm. Whenever a vehicle has to leave a customer and drive to

the next customer (or the depot), or at pre-defined time intervals, using the TOPSIS

mechanism, a new set of routes is selected from the set of non-dominated solutions

found by the algorithm. Driving vehicles are then rerouted according to the new set of

routes, and new vehicles are assigned as needed. This operation is repeated until all

customers have been served, and all vehicles have returned to the depot.

4. In the fourth strategy customers’ demands are unknown, while all other information,

including traveling time, is known in advance. When the algorithm starts, demands of

some of the customers are known. Based on this information, the algorithm runs for a

pre-defined period of time; after that, using the TOPSIS mechanism, a set of routes is

selected from the set of non-dominated solutions found by the algorithm. Vehicles

start driving according to this set of routes, while the algorithm continues to run.

Whenever a vehicle arrives at a customer, the customer is removed from all solutions

evolved by the algorithm. Simultaneously, new customers’ demands are revealed to

the algorithm, which, accordingly adds the new customers to the evolved solutions.

Whenever a vehicle has to leave a customer and drive to the next customer (or the

depot), or at pre-defined time intervals, using the TOPSIS mechanism, a new set of

routes is selected from the set of non-dominated solutions found by the algorithm.
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Driving vehicles are then rerouted according to the new set of routes, and new

vehicles are assigned as needed. This operation is repeated until all customers have

been served, and all vehicles returned to the depot.

5. In the fifth strategy, neither customers’ demands nor traveling times are known in

advance.  When the algorithm starts,  some of the customers’ demands are known. In

regard to traveling time, at pre-defined intervals, traveling time information for the

next pre-defined time period is revealed to the algorithm. Based on this information,

the algorithm runs for a pre-defined period of time, after that, using the TOPSIS

mechanism, a set of routes is selected from the set of non-dominated solutions found

by the algorithm. Vehicles start driving according to this set of routes, while the

algorithm continues to run. Whenever a vehicle arrives at a customer, the customer is

removed from all solutions evolved by the algorithm. Simultaneously, new

customers’ demands are revealed to the algorithm, which accordingly adds the new

customers to the evolved solutions. Whenever a vehicle has to leave a customer and

drive to the next customer (or the depot), or at pre-defined time intervals, using the

TOPSIS mechanism, a new set of routes is selected from the set of non-dominated

solutions found by the algorithm. Driving vehicles are then rerouted according to the

new set of routes, and new vehicles are assigned as needed. This operation is repeated

until all customers have been served, and all vehicles have returned to the depot.

10.6. Case Study 1
In the first case study the test scenario is defined as follows:

1. Network: The greater Tel-Aviv metropolitan area transportation network.

2. Dissatisfaction function: It is assumed that the dissatisfaction functions of all

customers are linear, meaning
1

1 i
i S

i i

t EETf t
TW EET

 and

1

( ) 1i E
i

ELT tg t
ELT TW

.

The  test  scenario  is  solved  100  times.  In  the  first  50  times,  it  is  assumed  that  all

customers have the same priority. Under this assumption, the test scenario is solved 100

times using each of the 5 strategies described earlier. In the next 50 times, it is assumed
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that each customer has a priority equal to its demand. Under this assumption, the test

scenario is solved 10 times using each of the 5 strategies described earlier.

10.6.1. Priority Comparison

For each of our three algorithms, five paired-samples t-test were conducted to compare

the  total  travel  time  obtained  when  all  customers  have  the  same  priority  vs.  the  travel

time obtained when each customer has a different priority for each of the five strategies.

The results are summarized in Table 10.1.

Same Priority Different PriorityAlgorithm Strategy M SD M SD
t df Sig.

1 50.976 2.143 49.608 1.75 4.871 99 0
2 58.415 1.462 57.645 3.042 2.298 99 0.024
3 55.77 1.924 53.942 1.923 7.074 99 0
4 60.557 2.205 57.922 3.496 6.013 99 0

VEGA

5 57.174 1.853 52.378 4.118 10.82 99 0
1 59.176 3.406 54.554 3.264 9.323 99 0
2 73.706 3.816 70.538 1.762 6.91 99 0
3 58.394 12.22 64.69 1.25 -5.063 99 0
4 72.598 2.949 68.079 8.238 5.406 99 0

SPEA2

5 64.424 0.914 58.762 14.57 3.876 99 0
1 64.833 3.769 77.627 6.807 -15.764 99 0
2 81.972 2.272 80.89 2.937 3.01 99 0.003
3 64.121 3.223 33.935 0.834 89.904 99 0
4 78.618 2.689 81.198 2.284 -7.596 99 0

VE-ABC

5 62.831 3.226 32.985 1.133 86.239 99 0

Table 10.1 – Paired T-Test resuls for comparison of the total travel time for all three algorithms

when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for all strategies

there is a significant difference in the travel time, which is lower when each customer has

a different priority. For the SPEA2 algorithm, strategy 3 shows a significant difference in

the travel time, which is lower when all customers have the same priorith. A significant

difference in the travel time also exists for all other strategies, which is lower when each

customer  has  a  different  priority.  As  for  the  VE-ABC algorithm,  for  strategies  1  and  4

there is a significant difference in the travel time, which is lower when all customers have

the same priority. Similarly, for strategies 2, 3 and 5 there is a significant difference in the

travel time, which becomes lower when each customer has a different priority.
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For each of our three algorithms, five paired-samples t-tests were conducted to compare

the number of vehicles needed when all customers have the same priority vs. the number

of vehicles needed when each customer has a different priority for each of the five

strategies. The results are summarized in Table 10.2.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 11 0.853 10.44 0.499 5.789 99 0
2 19.91 2.332 20.29 2.775 -1.023 99 0.309
3 26.81 5.59 25.78 3.126 1.552 99 0.124
4 21.95 2.928 20.6 3.83 2.834 99 0.006

VEGA

5 29.85 2.267 24.75 3.825 12.333 99 0
1 15.4 1.463 13.46 1.167 9.779 99 0
2 32.55 3.937 31.99 2.385 1.176 99 0.242
3 34.25 6.838 37.47 1.784 -4.509 99 0
4 31.84 2.905 31.62 5.548 0.375 99 0.709

SPEA2

5 37.63 1.412 31.56 7.296 7.984 99 0
1 15.33 1.67 35.42 8.761 -22.177 99 0
2 34.21 2.54 38.98 0.804 -17.667 99 0
3 34.67 3.785 19.63 1.125 36.232 99 0
4 31.62 3.09 38.9 1.567 -20.261 99 0

VE-ABC

5 33.15 5.456 18.26 1.515 24.625 99 0

Table 10.2 – Paired T-Test resuls for comparison of the number of vehicles needed for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results  for strategies 1,  4

and 5, there is a significant difference in the number of vehicles needed, which is lower

when each customer has a different priority. For the SPEA2 algorithm, for strategies 1, 3

and 5 there is a significant difference in the travel time, which is lower when each

customer has a different priority. As for the VE-ABC algorithm, for all strategies there is

a significant difference in the travel time. For strategies 1, 2 and 4, there is a significant

difference in the travel time, which is  lower when all  customers have the same priority.

Similarly, for strategies 3 and 5 there is a significant difference in the travel time, which

becomes lower when each customer has a different priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  balance  of  the  tours  when  all  customers  have  the  same  priority  vs.  the  number  of

vehicles needed when each customer has a different priority for each of the five

strategies. The results are summarized in Table 10.3.
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 0.768 0.311 0.632 0.056 4.237 99 0
2 0.394 0.262 0.368 0.284 0.715 99 0.476
3 0.334 0.387 0.259 0.266 1.533 99 0.128
4 0.49 0.324 0.46 0.31 0.732 99 0.466

VEGA

5 0.235 0.289 0.451 0.356 -5.038 99 0
1 0.365 0.179 0.363 0.2 0.053 99 0.958
2 0.288 0.295 0.287 0.305 0.031 99 0.975
3 0.286 0.319 0.19 0.229 2.337 99 0.021
4 0.309 0.35 0.34 0.31 -0.666 99 0.507

SPEA2

5 0.258 0.307 0.214 0.273 1.175 99 0.243
1 0.64 0.342 0.351 0.392 5.628 99 0
2 0.294 0.288 0.145 0.188 4.646 99 0
3 0.252 0.269 0.326 0.311 -1.891 99 0.062
4 0.343 0.304 0.255 0.332 2.254 99 0.026

VE-ABC

5 0.294 0.307 0.122 0.021 5.537 99 0

Table 10.3 – Paired T-Test results for comparison of the balance of the tours for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for strategies 1 and

5  there  is  a  significant  difference  in  the  tour  balance.  In  strategy  1  the  tour  balance  is

lower (meaning more balanced) when each customer has a different priority. However, in

strategy  5  the  tour  balance  is  lower  when all  customers  have  the  same priority.  For  the

SPEA2 algorithm, only strategy 3 shows a significant difference in the tour balance,

which is lower when each customer has different priority. As for the VE-ABC algorithm,

for all strategies but stratedy 3, there is a significant difference in the tour balance, which

is lower when each customer has a different priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the total dissatisfaction of the customers when all customers have the same priority vs.

the total dissatisfaction of the customers when each customer has a different priority, for

each of the five strategies. The results are summarized in Table 10.4.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 58.685 22.198 64.729 15.394 -2.147 99 0.034
2 7.512 8.336 3.539 2.047 4.769 99 0
3 9.518 9.492 5.218 3.125 4.154 99 0
4 12.981 10.097 2.796 1.567 9.879 99 0

VEGA

5 7.317 9.767 5.01 4.866 2.078 99 0.04
1 40.797 10.131 0.147 0.225 40.139 99 0
2 68.786 48.423 0.24 0.298 14.159 99 0

SPEA2

3 53.119 25.344 0.174 0.229 20.894 99 0
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

4 56.901 27.795 0.3 0.271 20.411 99 0
5 38.33 9.592 0.249 0.356 39.645 99 0
1 1785.667 538.197 0.549 0.609 33.167 99 0
2 73.677 24.78 0.306 0.345 29.598 99 0
3 38.366 19.664 0.188 0.269 19.404 99 0
4 78.169 37.324 0.236 0.255 20.875 99 0

VE-ABC

5 78.448 71.603 0.032 0.025 10.951 99 0

Table 10.4 – Paired T-Test results for comparison of the total dissatisfaction of the customers for all

three algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for strategy 1, there

is a significant difference in the total dissatisfaction of the customers, which is lower

when  all  customers  have  the  same  priority.  For  all  other  strategies,  there  is  also  a

significant difference in the total dissatisfaction of the customers, which is lower when

each customer has a different priority.  For both the SPEA2 algorithm and the VE-ABC

algorithm, in all strategies there is a significant difference in the total dissatisfaction of

the customers obtained when all customers have the same priority and when each

customer  has  a  different  priority,  which  is  lower  when  each  customer  has  a  different

priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  arrival  time  of  the  last  vehicle  when  all  customers  have  the  same  priority  vs.  the

arrival time of the last vehicle when each customer has a different priority, for each of the

five strategies. The results are summarized in Table 10.5.

Same Priority Different PriorityAlgorithm Strategy M SD M SD
t df Sig.

1 14.262 0.343 14.728 0.575 -7.619 99 0
2 12.866 0.4 12.841 0.414 0.454 99 0.651
3 12.342 0.571 12.753 0.546 -4.914 99 0
4 12.817 0.462 12.867 0.555 -0.677 99 0.5

VEGA

5 12.179 0.469 12.605 0.587 -6.298 99 0
1 13.041 0.407 12.943 0.329 1.845 99 0.068
2 12.176 0.451 12.18 0.315 -0.059 99 0.953
3 11.637 0.491 11.996 0.427 -5.401 99 0
4 12.163 0.35 12.098 0.439 1.202 99 0.232

SPEA2

5 11.816 0.423 11.979 0.472 -2.669 99 0.009
1 14.364 0.555 12.491 1.022 16.089 99 0
2 12.345 0.442 11.868 0.288 8.783 99 0
3 12.069 0.454 11.16 0.328 14.824 99 0
4 12.338 0.549 11.855 0.305 7.502 99 0

VE-ABC

5 12.078 0.535 11.246 0.216 14.655 99 0
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Table 10.5 – Paired T-Test results for comparison of the arrival time of the last vehicle for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for strategies 1, 3

and 5 there is a significant difference in the arrival time of the last vehicle, which is

earlier when all customers have the same priority. For the SPEA2 algorithm, for

strategies 3 and 5 there is  a significant difference in the arrival  time of the last  vehicle,

which  is  earlier  when  all  customers  have  the  same  priority.  As  for  the  VE-ABC

algorithm, in all strategies there is a significant difference in the arrival time of the last

vehicle, which is later when each customer has a different priority.

10.6.1.1 Conclusions

For the first objective function, total travel time, a significant difference in the solutions

was found for the improved VEGA and SPEA2 algorithms, which is better when each

customer has a different priority. However when using the VE-ABC algorithm, no

significant difference in the solutions was found. Similar results were found for the 2nd

objective function, number of vehicles needed and 4th objective function, customers'

dissatisfaction.

For the 3rd objective function, tour balance, a significant difference in the solutions was

found only for the VE-ABC algorithm, which is better when each customer has a

different priority.

For the fifth objective, arrival time at the last customer, the best solutions are obtained

when when all customers have the same priority, for the improved VEGA and SPEA2

algorithms, and when each customer has a different objective function, when using the

VE-ABC algorithm.

10.6.2. Strategies Comparison – VEGA algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.6.
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Strategy 1 Strategy 2Customes
Priority

Objective
Function M SD M SD t df Sig.

1 50.976 2.143 58.415 1.462 -27.741 99 0
2 11 0.853 19.91 2.332 -33.745 99 0
3 0.768 0.311 0.394 0.262 9.104 99 0
4 58.685 22.198 0.231 0.256 26.325 99 0

The Same

5 14.262 0.343 12.866 0.4 26.671 99 0
1 49.608 1.75 57.645 3.042 -22.181 99 0
2 10.44 0.499 20.29 2.775 -34.765 99 0
3 0.632 0.056 0.368 0.284 9.145 99 0
4 2104.407 500.488 3.539 2.047 41.977 99 0

Different

5 14.728 0.575 12.841 0.414 25.481 99 0

Table 10.6 – Paired T-Test results for comparison of the results of the different objectives functions

when using strategies 1 and 2, when all customers have the same and different priorities

As it can be seen from the results, no matter whether all customers have the same

priority or not, strategy 1 provides better solutions in terms of travel time and number of

vehicles needed. Similarly, whether or not all customers have the same priority, strategy

2 provides better solutions in terms of tour balance, customers’ dissatisfaction, and arrival

time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.7.

Strategy 1 Strategy 3Customes
Priority

Objective
Function M SD M SD

t df Sig.

1 50.976 2.143 55.77 1.924 -16.39 99 0
2 11 0.853 26.81 5.59 -28.348 99 0
3 0.768 0.311 0.334 0.387 9.407 99 0
4 58.685 22.198 0.293 0.292 26.247 99 0

The Same

5 14.262 0.343 12.342 0.571 30.748 99 0
1 49.608 1.75 53.942 1.923 -16.937 99 0
2 10.44 0.499 25.78 3.126 -47.969 99 0
3 0.632 0.056 0.259 0.266 13.68 99 0
4 2104.407 500.488 5.218 3.125 41.957 99 0

Different

5 14.728 0.575 12.753 0.546 27.621 99 0

Table 10.7 – Paired T-Test results for comparison of the results of the different objectives functions

when using strategies 1 and 3, when all customers have the same and different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether or not all customers have the same priority, strategy 3

provides better solutions in terms of tour balance, customers’ dissatisfaction, and arrival

time of the last vehicle.
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The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.8.

Strategy 2 Strategy 3Customes
Priority

Objective
Function M SD M SD

t df Sig.

1 58.415 1.462 55.77 1.924 10.989 99 0
2 19.91 2.332 26.81 5.59 -10.734 99 0
3 0.394 0.262 0.334 0.387 1.281 99 0.203
4 7.512 8.336 0.293 0.292 8.664 99 0

The Same

5 12.866 0.4 12.342 0.571 7.751 99 0
1 57.645 3.042 53.942 1.923 9.862 99 0
2 20.29 2.775 25.78 3.126 -13.635 99 0
3 0.368 0.284 0.259 0.266 2.682 99 0.009
4 115.061 66.547 5.218 3.125 16.43 99 0

Different

5 12.841 0.414 12.753 0.546 1.206 99 0.231

Table 10.8 – Paired T-Test results for comparison of the results of the different objectives functions

when using strategies 2 and 3, when all customers have the same and different priorities

As it can be seen from the results, whether or not all customers have the same priority,

strategy 2 provides better solutions only in terms of the number of vehicles needed.

Strategy 3 provides better solutions in terms of traveling time and customers'

dissatisfaction. When all customers have the same priority, strategy 3 provides better

solutions in terms of arrival time of the last vehicle. When each customer has a different

priority, strategy 3 provides better solutions in terms of tour balance.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.9.

Strategy 2 Strategy 4Customes
Priority

Objective
Function M SD M SD

t df Sig.

1 58.415 1.462 60.557 2.205 -8.099 99 0
2 19.91 2.332 21.95 2.928 -5.452 99 0
3 0.394 0.262 0.49 0.324 -2.216 99 0.029
4 7.512 8.336 0.399 0.311 8.589 99 0

The Same

5 12.866 0.4 12.817 0.462 0.78 99 0.437
1 57.645 3.042 57.922 3.496 -0.574 99 0.567
2 20.29 2.775 20.6 3.83 -0.636 99 0.526
3 0.368 0.284 0.46 0.31 -2.259 99 0.026
4 115.061 66.547 2.796 1.567 16.858 99 0

Different

5 12.841 0.414 12.867 0.555 -0.368 99 0.714

Table 10.9 – Paired T-Test results for comparison of the results of the different objectives functions

when using strategies 2 and 4, when all customers have the same and different priorities
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As it can be seen from the results, whether or not all customers have the same priority,

strategy 2 provides better solutions in terms of tour balance, which strategy 4 provides

better solutions in terms of customers' dissatisfaction. When all customers have the same

priority, strategy 2 provides better solutions in terms of travel time and number of

vehicles needed.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.10.

Strategy 3 Strategy 5Customes
Priority

Objective
Function M SD M SD

t df Sig.

1 55.77 1.924 57.174 1.853 -5.075 99 0
2 26.81 5.59 29.85 2.267 -4.875 99 0
3 0.334 0.387 0.235 0.289 1.978 99 0.051
4 9.518 9.492 0.225 0.3 9.761 99 0

The Same

5 12.342 0.571 12.179 0.469 2.128 99 0.036
1 53.942 1.923 52.352 4.076 3.57 99 0.001
2 25.78 3.126 24.78 3.863 2.033 99 0.045
3 0.259 0.266 0.456 0.362 -4.887 99 0
4 169.626 101.601 5.008 4.867 16.206 99 0

Different

5 12.753 0.546 12.603 0.587 1.826 99 0.071

Table 10.10 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same and different priorities

As it can be seen from the results, whether or not all customers have the same priority,

strategy 5 provides better solutions in terms of customers' dissatisfaction. When all

customers have the same priority, strategy 3 provides better solutions in terms of travel

time and number of vehicles needed and strategy 5 provides better solutions in terms of

arrival time of last vehicle. When each customer has different priority, strategy 3 provides

better solutions in terms of route balance and strategy 5 provides better solutions in terms

of travel time and number of vehicles needed.

10.6.2.1 Conclusions

Table 10.11 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.
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StrategyCustomes Priority Objective
Function 1 2 3 4 5

1 +
2 +
3 + +
4 +  + +

The Same

5 +
1 +
2 +
3 +
4 +

Different

5 + +

Table 10.11 - Best strategy for each of the objective functions

As it can be seen from Table 10.11, whether or not all customers have the same priority,

objective functions 1, travel time, and 2, number of vehicles needed, are achieved best

using strategy 1. Objective functions 3, tour balance, is best obtained by using strategy 3.

Objective functions 5, arrival time of the last vehicle, is best obtained by using strategy 5

(which means that knowing all customers’ demands in advance does not improve the

algorithm's results).

10.6.3. Strategies Comparison – SPEA2 algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.12.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 59.176 3.406 73.706 3.816 -30.053 99 0
2 15.4 1.463 32.55 3.937 -41.45 99 0
3 0.365 0.179 0.288 0.295 2.105 99 0.038
4 40.797 10.131 2.116 1.489 37.012 99 0

The Same

5 13.041 0.407 12.176 0.451 14.332 99 0
1 54.554 3.264 70.538 1.762 -40.851 99 0
2 13.46 1.167 31.99 2.385 -69.541 99 0
3 0.363 0.2 0.287 0.305 2.126 99 0.036
4 4.778 7.324 0.24 0.298 6.202 99 0

Different

5 12.943 0.329 12.18 0.315 15.897 99 0

Table 10.12 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities
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As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether or not all customers have the same priority, strategy 2

provides better solutions in terms of tour balance, customers dissatisfaction and arrival

time at the last customer.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.13.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 59.176 3.406 58.394 12.22 0.637 99 0.526
2 15.4 1.463 34.25 6.838 -27.833 99 0
3 0.365 0.179 0.286 0.319 2.177 99 0.032
4 40.797 10.131 1.634 0.78 38.148 99 0

The Same

5 13.041 0.407 11.637 0.491 23.595 99 0
1 54.554 3.264 64.69 1.25 -27.896 99 0
2 13.46 1.167 37.47 1.784 -109.384 99 0
3 0.363 0.2 0.19 0.229 5.941 99 0
4 4.778 7.324 0.174 0.229 6.313 99 0

Different

5 12.943 0.329 11.996 0.427 17.656 99 0

Table 10.13 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As can  be  seen  from the  results,  if  all  customers  have  the  same priority,  a  significant

difference is found in the number of vehicles needed, which is lower in strategy 1. A

significant difference is also found in the balance of the tour, customers' dissatisfaction

and arrival time of the last vehicle, which are lower in strategy 3. When each customer

has  a  different  priority,  strategy  1  provides  better  solutions  in  terms  of  travel  time  and

number of vehicles needed.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.14.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 73.706 3.816 58.394 12.22 11.79 99 0
2 32.55 3.937 34.25 6.838 -2.186 99 0.031
3 0.288 0.295 0.286 0.319 0.048 99 0.962
4 68.786 48.423 1.634 0.78 13.893 99 0

The Same

5 12.176 0.451 11.637 0.491 8.629 99 0
1 70.538 1.762 64.69 1.25 27.642 99 0Different
2 31.99 2.385 37.47 1.784 -16.867 99 0
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Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

3 0.287 0.305 0.19 0.229 2.534 99 0.013
4 7.809 9.672 0.174 0.229 7.904 99 0
5 12.18 0.315 11.996 0.427 3.484 99 0.001

Table 10.14 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As can be seen from the results, when all customers have the same priority, a significant

difference was found for travel time, customers' dissatisfaction and arrival time of the last

vehicle, all of which are lower in strategy 3. Similarly, when each customer has his own

priority, a significant difference was found for travel time, tour balance customers’

dissatisfaction  and  arrival  time  of  last  vehicle,  all  of  which  are  lower  in  strategy  3.  A

significant difference was also found for the number of vehicles needed, which is lower

in strategy 2.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.15.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 73.706 3.816 72.598 2.949 2.159 99 0.033
2 32.55 3.937 31.84 2.905 1.4 99 0.165
3 0.288 0.295 0.309 0.35 -0.434 99 0.666
4 68.786 48.423 1.75 0.855 13.868 99 0

The Same

5 12.176 0.451 12.163 0.35 0.223 99 0.824
1 70.538 1.762 68.079 8.238 2.984 99 0.004
2 31.99 2.385 31.62 5.548 0.616 99 0.54
3 0.287 0.305 0.34 0.31 -1.263 99 0.21
4 7.809 9.672 0.3 0.271 7.762 99 0

Different

5 12.18 0.315 12.098 0.439 1.564 99 0.121

Table 10.15 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As can be seen from the results, whether all customers have the same priority or each

customer  has  a  different  priority,  a  significant  difference  was  found for  travel  time  and

customers' dissatisfaction, which are lower in strategy 4.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.16.

Customer’s
Priority

Objective
Function

Strategy 3 Strategy 5 t df Sig.
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M SD M SD
1 58.394 12.22 64.424 0.914 -4.914 99 0
2 34.25 6.838 37.63 1.412 -4.92 99 0
3 0.286 0.319 0.258 0.307 0.66 99 0.511
4 53.119 25.344 1.179 0.295 20.493 99 0

The Same

5 11.637 0.491 11.816 0.423 -2.847 99 0.005
1 64.69 1.25 58.762 14.57 4.019 99 0
2 37.47 1.784 31.56 7.296 7.899 99 0
3 0.19 0.229 0.214 0.273 -0.638 99 0.525
4 5.661 7.442 0.249 0.356 7.311 99 0

Different

5 11.996 0.427 11.979 0.472 0.266 99 0.791

Table 10.16 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As can be seen from the results, whether all customers have the same priority or not, a

significant difference was found for customers' dissatisfaction, which is lower in strategy

5.  When  all  customers  have  the  same  priority,  a  significant  difference  was  found  for

travel time, number of vehicles needed and arrival time of the last vehicle, all of which

are lower in strategy 3. Similarly, when each customer has his own priority, a significant

difference was found for travel time and number of vehicles, all of which are lower in

strategy 5.

10.6.3.1 Conclusions

Table 10.17 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 + +
2 +
3 + +  +  +
4 + +

The Same

5 +
1 +
2 +
3 + +
4 + +

Different

5 +  + +

Table 10.17 - Best strategy for each of the objective functions
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As can be seen from Table 10.17, whether or not all customers have the same priority,

objective functions 1, travel time, 2, number of vehicles needed and 4, customers'

dissatisfaction, are best obtained using strategy 1. Objective functions 3, tour balance,

and 5, arrival time of the last vehicle, are best obtained by using strategy 3.

10.6.4. Strategies Comparison – VE-ABC algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.18.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 64.833 3.769 81.972 2.272 -39.757 99 0
2 15.33 1.67 34.21 2.54 -65.027 99 0
3 0.64 0.342 0.294 0.288 7.515 99 0
4 1785.667 538.197 2.266 0.762 33.136 99 0

The Same

5 14.364 0.555 12.345 0.442 30.018 99 0
1 77.627 6.807 80.89 2.937 -4.596 99 0
2 35.42 8.761 38.98 0.804 -4.027 99 0
3 0.351 0.392 0.145 0.188 5.17 99 0
4 17.861 19.803 0.306 0.345 8.895 99 0

Different

5 12.491 1.022 11.868 0.288 5.588 99 0

Table 10.18 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As can  be  seen  from the  results,  whether  all  customers  have  the  same priority  or  not,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, strategy 2 provides better solutions in terms of tour balance,

customers’ dissatisfaction, and arrival time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.19.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 64.833 3.769 64.118 3.202 1.494 99 0.138
2 15.33 1.67 34.68 3.792 -48.151 99 0
3 0.64 0.342 0.251 0.27 9.047 99 0
4 1785.667 538.197 1.157 0.562 33.159 99 0

The Same

5 14.364 0.555 12.073 0.451 29.452 99 0
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Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 77.627 6.807 33.935 0.834 62.504 99 0
2 35.42 8.761 19.63 1.125 17.839 99 0
3 0.351 0.392 0.326 0.311 0.522 99 0.603
4 17.861 19.803 0.188 0.269 8.931 99 0

Different

5 12.491 1.022 11.16 0.328 12.066 99 0

Table 10.19 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As can be seen from the results, a significant difference was found in customers'

dissatisfaction and arrival time of last vehicle, which is lower in 3, whether all customers

have the same priority or not. In the case of the number of vehicles needed, a significant

difference also exiss using strategy 1, when all customers have the same priority. When

each  customer  has  a  different  priority,  strategy  3  provides  a  better  solution  in  terms  of

tour balance.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.20.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 81.972 2.272 63.612 3.995 35.333 99 0
2 34.21 2.54 34.49 4.089 -0.559 99 0.578
3 0.294 0.288 0.251 0.27 1.083 99 0.281
4 73.677 24.78 1.146 0.573 29.267 99 0

The Same

5 12.345 0.442 12.066 0.458 4.292 99 0
1 80.89 2.937 33.935 0.834 152.175 99 0
2 38.98 0.804 19.63 1.125 138.676 99 0
3 0.145 0.188 0.326 0.311 -4.904 99 0
4 9.942 11.218 0.188 0.269 8.713 99 0

Different

5 11.868 0.288 11.16 0.328 17.427 99 0

Table 10.20 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As can be seen from the results, strategy 2 provides a better solution in terms of balance

of  the  tour,  when  each  customer  has  a  different  priority.  Strategy  3  provides  better

solutions in terms of travel time customers’ dissatisfaction and arrival time of last

vehicle, wether all customers have the same priority or not.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.21.
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Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 81.972 2.272 78.618 2.689 9.745 99 0
2 34.21 2.54 31.62 3.09 7.508 99 0
3 0.294 0.288 0.343 0.304 -1.223 99 0.224
4 73.677 24.78 2.404 1.148 28.725 99 0

The Same

5 12.345 0.442 12.338 0.549 0.1 99 0.92
1 80.89 2.937 81.198 2.284 -0.788 99 0.433
2 38.98 0.804 38.9 1.567 0.478 99 0.634
3 0.145 0.188 0.255 0.332 -2.817 99 0.006
4 9.942 11.218 0.236 0.255 8.629 99 0

Different

5 11.868 0.288 11.855 0.305 0.306 99 0.76

Table 10.21 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As  can  be  seen  from  the  results,  strategy  2  provides  better  solutions  in  terms  of  tour

balance, when all customers have the same priority. Strategy 4 provides better solutions

in terms of travel time, number of vehicles and customers' dissatisfaction, when each

customer has a different priority.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.22.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD

t df Sig.

1 63.612 3.995 62.831 3.226 1.661 99 0.1
2 34.49 4.089 33.15 5.456 2.162 99 0.033
3 0.251 0.27 0.294 0.307 -1.101 99 0.274
4 37.265 18.641 2.413 2.202 18.425 99 0

The Same

5 12.066 0.458 12.078 0.535 -0.153 99 0.879
1 33.935 0.834 32.985 1.133 6.789 99 0
2 19.63 1.125 18.26 1.515 7.466 99 0
3 0.326 0.311 0.122 0.021 6.51 99 0
4 6.126 8.733 0.032 0.025 6.98 99 0

Different

5 11.16 0.328 11.246 0.216 -2.115 99 0.037

Table 10.22 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the sameor different priorities

As can be seen from the results, strategy 5 provides better solutions in terms of number

of vehicles and customers' dissatisfaction, when all customers have the same priority or

not.  Strategy  5  also  provides  better  solutions  in  terms  of  travel  time  and  tour  balance,

when each customer has a different priority. Strategy 3 provides better solutions in terms

of arrival time of last vehicle, when all customers have the same priority.
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10.6.4.1 Conclusions

Table 10.23 describes which of the five strategies used provides the best value for each

of the objective functions, whether all customers have the same priority or each customer

has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +
2 +
3 +  + +
4 +

The Same

5 + +
1 +
2 +
3 + +
4 +

Different

5 +

Table 10.23 - Best strategy for each of the objective functions

As can be seen from Table 10.23, when all customers have the same priority, objective

functions 1, travel time, and 3, tour balance are best obtained using strategy 5. Objective

function 5, arrival time of the last vehicle, is best obtained either using strategy 3.

When all customers have the same priority, objective function 2, number of vehicles

needed, is best obtained using strategy 1. Objective function 4, customers' dissatisfaction,

is best obtained by using strategy 3.

When each customer has different priority, objective functions 2, number of vehicles

needed and 4, customers' dissatisfaction, are best obtained using strategy 5.

10.6.5. Algorithms Comparison

Since in the real-world, information on travel time and customers’ demands are not

known in advance, strategy 5 has to be used. Table 10.24 compares the results obtained

for each of the five objectives, using paired t-tests, functions by each one of the three

algorithms when applying the 3rd strategy. For each objective function, the best value

obtained is highlighted in red.

AlgorithmCustomer’s
Priority Objective Function Imp. VEGA SPEA2 VE-ABC
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AlgorithmCustomer’s
Priority Objective Function Imp. VEGA SPEA2 VE-ABC

1 57.174 64.424 62.831
2 29.85 37.63 33.15
3 0.235 0.258 0.294
4 0.225 1.179 2.413

The Same

5 12.179 11.816 12.078
1 52.377 58.762 32.985
2 24.67 31.56 18.26
3 0.446 0.214 0.122
4 4.997 0.249 0.032

Different

5 12.589 11.979 11.246

Table 10.24 - Comparison of the 5th strategy used in all three algorithms

As can be seen, when all customers have the same priority, most objective functions are

best obtained by using the improved VEGA algorithm. However, if used when each

customer has a different priority, all objective functions are best obtained first by using

the improved VE-VEGA algorithm.

10.6.6. Conclusions

For all three algorithms, whether all customers have the same priority or not, objective

functions 1, travel time, and 2, number of vehicles needed, are best obtained using

strategy 1. Objective functions 3, tour balance, 4, customers’ dissatisfaction, and 5,

arrival  time  of  the  last  vehicle,  are  best  obtained  by  using  either  strategy  3  or  by  using

strategy 5 (which means that knowing all customers’ demands in advance does not

improve the algorithm's results).

Also, in all objective function, except the 5th, arrival time of last vehicle, better solutions

are obtained when each customer has a different priority.

Since in the real-world, information on travel time and customers’ demands are not

known in advance, strategy 3 has to be used. From the results obtained, it is not clear

whether one algorithm can provide the best solution in all cases.

10.7. Case Study 2
In the second case study the test scenario is defined as follows:

1. Network: The greater Tel-Aviv metropolitan area transportation network.
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2. Dissatisfaction function: It is assumed that all customers dislike it when the supplier

is either early or late. Therefore, the dissatisfaction functions of all customers are in

the form of
5
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The  test  scenario  is  solved  100  times.  In  the  first  50  times,  it  is  assumed  that  all

customers have the same priority. Under this assumption, the test scenario is solved 100

times using each of the 5 strategies described earlier. In the next 50 times, it is assumed

that  each  customer  has  a  priority  equal  to  his  demand.  Under  this  assumption,  the  test

scenario is solved 10 times using each of the 5 strategies described earlier.

10.7.1. Priority Comparison

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  total  travel  time  obtained  when  all  customers  have  the  same  priority  vs.  the  travel

time obtained when each customer has a different priority for each of the five strategies.

The results are summarized in Table 10.25.

Same Priority Different PriorityAlgorithm Strategy M SD M SD
t df Sig.

1 50.235 2.12 49.383 2.051 2.77 99 0.007
2 56.78 2.381 58.053 2.34 -3.782 99 0
3 53.754 2.328 56.329 1.853 -8.907 99 0
4 58.366 2.827 57.412 1.972 2.762 99 0.007

VEGA

5 53.321 3.497 54.425 6.048 -1.734 99 0.086
1 59.456 3.87 57.281 2.432 4.527 99 0
2 72.54 2.967 72.854 1.718 -0.905 99 0.368
3 63.069 1.61 58.479 12.283 3.74 99 0
4 72.937 2.7 72.343 3.561 1.306 99 0.194

SPEA2

5 65.885 1.274 64.9 2.162 3.675 99 0
1 62.574 2.528 51.812 17.456 6.141 99 0
2 78.716 2.862 79.773 2.033 -2.971 99 0.004
3 63.547 2.61 63.372 2.33 0.481 99 0.631
4 79.326 1.982 74.508 10.636 4.591 99 0

VE-ABC

5 63.902 2.405 63.653 1.841 0.782 99 0.436

Table 10.25 – Paired T-Test results for comparison of the total travel time for all three algorithms

when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for strategies 2 and

3, a significant difference exists in the solution obtained when all customers have the

same priority vs. the solution obtained when each customer has a different priority: it is
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better when all customers have the same priority. While for strategies 1 and 4 a better

solution is obtained when each customer has a different priority.

For the SPEA2 algorithm, for strategies 1, 3 and 5, a significant difference exists in the

solution. The best solutions are obtained when each customer has a different priority.

As  for  the  VE-ABC  algorithm,  for  strategies  1  and  4,  the  best  solutions  are  obtained

when  each  customer  has  a  different  priority,  while  for  strategy  2  the  best  solution  is

obtained when all customers have the same priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the number of vehicles needed when all customers have the same priority vs. the number

of vehicles needed when each customer has a different priority for each of the five

strategies. The results are summarized in Table 10.26.

Same Priority Different PriorityAlgorithm Strategy M SD M SD
t df Sig.

1 9.92 0.787 9.98 0.778 -0.537 99 0.593
2 19.61 3.025 18.99 2.97 1.584 99 0.116
3 24.18 2.794 28.48 2.402 -12.096 99 0
4 20.67 3.327 19.46 1.684 3.286 99 0.001

VEGA

5 24.32 4.075 28.06 4.419 -6.475 99 0
1 14.73 2.265 14.01 1.396 2.578 99 0.011
2 33.04 4.122 33.64 2.41 -1.178 99 0.242
3 37.38 1.797 33.77 7.558 4.815 99 0
4 32.16 3.936 32.92 1.947 -1.754 99 0.082

SPEA2

5 39.5 1.078 36.86 2.697 9.534 99 0
1 14.6 1.583 13.77 2.733 2.657 99 0.009
2 34.23 1.874 34.4 2.361 -0.588 99 0.558
3 34.71 3.361 33.47 3.096 2.714 99 0.008
4 34.1 2.607 31.93 5.044 3.967 99 0

VE-ABC

5 33.93 4.344 32.2 4.355 2.778 99 0.007

Table 10.26 – Paired T-Test results for comparison of the number of vehicles needed for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for strategies 3 and

5 there are significant differences in the number of vehicles needed, which is lower when

all customers have the same priority, while for strategy 4 it is lower when each customer

has  a  different  priority.  For  the  SPEA2  algorithm,  for  strategy  1,  3  and  5  there  is  a

significant difference in the number of vehicles needed, which is lower when each

customer has a different priority. As for the VE-ABC algorithm, a significant difference
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was found for all strategies except 2, which is lower when each customer has a different

priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  balance  of  the  tours  when  all  customers  have  the  same  priority  vs.  the  number  of

vehicles needed when each customer has a different priority for each of the five

strategies. The results are summarized in Table 10.27.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 0.643 0.204 0.656 0.227 -0.392 99 0.696
2 0.4 0.248 0.533 0.338 -3.261 99 0.002
3 0.367 0.344 0.254 0.267 2.696 99 0.008
4 0.428 0.348 0.359 0.254 1.496 99 0.138

VEGA

5 0.354 0.349 0.371 0.335 -0.358 99 0.721
1 0.449 0.298 0.412 0.216 1.012 99 0.314
2 0.276 0.271 0.309 0.351 -0.795 99 0.429
3 0.147 0.286 0.294 0.323 -3.501 99 0.001
4 0.276 0.261 0.181 0.244 2.686 99 0.008

SPEA2

5 0.047 0.005 0.37 0.339 -9.544 99 0
1 0.505 0.273 0.659 0.353 -3.419 99 0.001
2 0.278 0.301 0.288 0.27 -0.262 99 0.794
3 0.326 0.308 0.32 0.331 0.119 99 0.906
4 0.206 0.197 0.356 0.263 -4.453 99 0

VE-ABC

5 0.268 0.257 0.216 0.277 1.463 99 0.147

Table 10.27 – Paired T-Test results for comparison of the balance of the tours for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For  the  improved  VEGA  algorithm,  as  can  be  seen  from  the  results,  no  significant

differences were found between the two strategies. For the SPEA2 algorithm, for

strategies 3 and 5, there is a significant difference in the tour balance, which is lower

when  all  customers  have  the  same  priority.  For  strategy  4,  a  significant  difference  was

found, and the best solution is obtained when each customer has a different priority. As

for the VE-ABC algorithm, for strategies 1 and 4, there is a significant difference in the

tour balance, which is lower when all customers have the same priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the total dissatisfaction of the customers when all customers have the same priority vs.

the total dissatisfaction of the customers when each customer has a different priority for

each of the five strategies. The results are summarized in Table 10.28.
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 6377.836 1493.335 5.007 1.144 42.673 99 0
2 711.196 471.646 0.659 0.479 15.068 99 0.001
3 883.465 543.889 0.556 0.36 16.235 99 0.001
4 523.829 236.472 0.418 0.267 22.131 99 0.001

VEGA

5 1067.894 584.697 0.41 0.338 18.256 99 0.001
1 279.938 131.424 0.28 0.168 21.282 99 0
2 240.18 121.072 0.418 0.302 19.796 99 0
3 217.02 87.821 0.31 0.294 24.678 99 0
4 183.016 19.873 0.283 0.148 92.092 99 0

SPEA2

5 168.64 25.725 0.41 0.375 65.543 99 0
1 5625.337 1649.478 6.916 2.743 34.061 99 0
2 357.507 218.147 0.427 0.289 16.369 99 0.001
3 340.457 291.438 0.406 0.299 11.668 99 0.007
4 331.339 111.103 0.48 0.322 29.774 99 0

VE-ABC

5 224.793 72.874 0.359 0.376 30.77 99 0

Table 10.28 – Paired T-Test results for comparison of the total dissatisfaction of the customers for

all three algorithms when all customers have the same priority vs. each customer has a different

priority

For all algorithms, the improved VEGA algorithm, the SPEA2 and the VE-ABC

algorithm, in all strategies there is a significant difference in the total dissatisfaction of

the customers obtained when all customers have the same priority vs. when each

customer has a different priority. Total dissatisfaction is lower when each customer has a

different priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  arrival  time  of  the  last  vehicle  when  all  customers  have  the  same  priority  vs.  the

arrival time of the last vehicle when each customer has a different priority, for each of the

five strategies. The results are summarized in Table 10.29.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 14.674 0.453 14.349 0.51 4.957 99 0
2 12.885 0.398 12.916 0.485 -0.483 99 0.63
3 12.914 0.541 12.408 0.382 7.643 99 0
4 12.789 0.5 12.806 0.458 -0.246 99 0.806

VEGA

5 12.908 0.725 12.361 0.485 6.251 99 0
1 13.046 0.647 12.928 0.294 1.753 99 0.083
2 12.375 0.344 12.03 0.342 7.962 99 0
3 11.851 0.29 11.802 0.562 0.781 99 0.437
4 12.322 0.404 12.088 0.246 4.667 99 0

SPEA2

5 11.937 0.143 12.053 0.422 -2.457 99 0.016
1 14.828 0.707 14.345 2.26 1.969 99 0.052VE-ABC
2 12.265 0.453 12.12 0.409 2.276 99 0.025
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

3 12.069 0.477 12.281 0.444 -3.184 99 0.002
4 12.28 0.373 12.139 0.476 2.275 99 0.025
5 11.941 0.412 12.165 0.341 -4.176 99 0

Table 10.29 – Paired T-Test results for comparison of the arrival time of the last vehicle for all

three algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as can be seen from the results, for strategies 1, 3

and 5 there is a significant difference in the arrival time of the last vehicle, which is

earlier when each customer has a different priority. For the SPEA2 algorithm, for

strategies 1, 3 and 5 there is a significant difference in the arrival time of the last vehicle,

which is earlier when each customer has a different priority. Strategy 5 provides better

solutions when all customers have the same priority. As for the VE-ABC algorithm,

strategies 3 and 5 provide better solutions when all customers have the same priority,

while strategies 2 and 4 provide better solutions when each customer has a different

priority.

10.7.1.1 Conclusions

For the first objective function, total travel time, a significant difference in the solutions

was found for the improved VEGA, SPEA2 and VE-ABC algorithms, which is better

when  each  customer  has  a  different  priority.  Similar  results  were  found  for  the  2nd

objective function, number of vehicles needed, 4th objective function, customers'

dissatisfaction and 5th objective function, arrival time at the last vehicle.

For  the  3rd objective function, tour balance, no significant difference in the solutions

was found.

10.7.2. Strategies Comparison – VEGA algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.30.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.
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Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 50.235 2.12 56.78 2.381 -21.565 99 0
2 9.92 0.787 19.61 3.025 -31.832 99 0
3 0.643 0.204 0.4 0.248 8.047 99 0
4 6377.836 1493.335 21.875 14.507 42.487 99 0

The Same

5 14.674 0.453 12.885 0.398 30.295 99 0
1 49.383 2.051 58.053 2.34 -27.2 99 0
2 9.98 0.778 18.99 2.97 -29.572 99 0
3 0.656 0.227 0.533 0.338 2.999 99 0.003
4 162.778 37.18 0.659 0.479 43.575 99 0

Different

5 14.349 0.51 12.916 0.485 19.518 99 0

Table 10.30 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether all customers have the same priority or not, strategy 2

provides better solutions in term of tour balance, customers’ dissatisfaction and arrival

time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.31.

Strategy 1 Strategy 3Customes
Priority

Objective
Function M SD M SD t df Sig.

1 50.235 2.12 53.754 2.328 -10.918 99 0
2 9.92 0.787 24.18 2.794 -47.002 99 0
3 0.643 0.204 0.367 0.344 6.803 99 0
4 6377.836 1493.335 27.174 16.729 42.597 99 0

The Same

5 14.674 0.453 12.914 0.541 24.223 99 0
1 49.383 2.051 56.329 1.853 -25.204 99 0
2 9.98 0.778 28.48 2.402 -74.225 99 0
3 0.656 0.227 0.254 0.267 11.818 99 0
4 162.778 37.18 0.556 0.36 43.714 99 0

Different

5 14.349 0.51 12.408 0.382 30.631 99 0

Table 10.31 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether or not all customers have the same priority, strategy 3

provides better solutions in terms of tour balance, customers’ dissatisfaction, and arrival

time of the last vehicle.
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The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.32.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 56.78 2.381 53.754 2.328 8.758 99 0
2 19.61 3.025 24.18 2.794 -10.121 99 0
3 0.4 0.248 0.367 0.344 0.792 99 0.43
4 711.196 471.646 27.174 16.729 14.463 99 0

The Same

5 12.885 0.398 12.914 0.541 -0.42 99 0.675
1 58.053 2.34 56.329 1.853 5.372 99 0
2 18.99 2.97 28.48 2.402 -25.12 99 0
3 0.533 0.338 0.254 0.267 6.773 99 0
4 21.429 15.564 0.556 0.36 13.412 99 0

Different

5 12.916 0.485 12.408 0.382 8.316 99 0

Table 10.32 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As can  be  seen  from the  results,  whether  all  customers  have  the  same priority  or  not,

strategy 2 provides better solutions only in terms of number of vehicles needed and

strategy 3 provides better solutions in terms of travel time and customers' dissatisfaction.

When when each customer has a different priority, strategy 3 provides better solutions in

terms of tour balance and arrival time of last vehicle as well.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.33.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 56.78 2.381 58.366 2.827 -4.402 99 0
2 19.61 3.025 20.67 3.327 -2.458 99 0.016
3 0.4 0.248 0.428 0.348 -0.635 99 0.527
4 711.196 471.646 16.112 7.274 14.697 99 0

The Same

5 12.885 0.398 12.789 0.5 1.519 99 0.132
1 58.053 2.34 57.412 1.972 1.952 99 0.054
2 18.99 2.97 19.46 1.684 -1.27 99 0.207
3 0.533 0.338 0.359 0.254 3.932 99 0
4 21.429 15.564 0.418 0.267 13.517 99 0

Different

5 12.916 0.485 12.806 0.458 1.7 99 0.092

Table 10.33 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As can be seen from the results, when all customers have the same priority, strategy 2

provides better solutions in terms of travel time and number of vehicles needed and



- 229 -

strategy 4 provides better solutions in terms of customers' dissatisfaction. When each

customer has a different priority, strategy 4 provides better solutions in terms of tour

banalce and customers' dissatisfaction.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.34.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 53.754 2.328 53.321 3.497 0.971 99 0.334
2 24.18 2.794 24.32 4.075 -0.271 99 0.787
3 0.367 0.344 0.354 0.349 0.28 99 0.78
4 883.465 543.889 32.847 17.985 15.594 99 0

The Same

5 12.914 0.541 12.908 0.725 0.06 99 0.952
1 56.329 1.853 54.425 6.048 3.104 99 0.002
2 28.48 2.402 28.06 4.419 0.847 99 0.399
3 0.254 0.267 0.371 0.335 -2.68 99 0.009
4 18.074 11.721 0.41 0.338 15.116 99 0

Different

5 12.408 0.382 12.361 0.485 0.796 99 0.428

Table 10.34 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As can be seen from the results, when all customers have the same priority, strategy 5

provides better solutions in terms of customers' dissatisfaction. When each customer has

a  different  priority,  strategy  3  provides  better  solutions  in  terms  of  tour  banalce  and

strategy 5 provides better solutions in terms of travel time and customers' dissatisfaction.

10.7.2.1 Conclusions

Table 10.35 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +
2 +
3 + +  +  +
4 +

The Same

5 + +  + +
1 +
2 +
3 +

Different

4 +  +
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StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

5 + +

Table 10.35 - Best strategy for each of the objective functions

As can be seen from Table 10.35,  whether  all  customers  have  the  same  priority  or,

objective functions 1, travel time, and 2, nember of vehicles needed, are best obtained

using strategy 1. Objective function 3, tour balance, is best obtained by using strategy 3.

Objective functions 4, customers’ dissatisfaction, is best obtained by using strategy 4, and

5, arrival time of last vehicle, is best obtained by using strategy 3 or 5.

10.7.3. Strategies Comparison – SPEA2 algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.36.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 59.456 3.87 72.54 2.967 -27.904 99 0
2 14.73 2.265 33.04 4.122 -40.107 99 0
3 0.449 0.298 0.276 0.271 4.177 99 0
4 279.938 131.424 7.388 3.724 20.771 99 0

The Same

5 13.046 0.647 12.375 0.344 8.982 99 0
1 57.281 2.432 72.854 1.718 -51.266 99 0
2 14.01 1.396 33.64 2.41 -64.488 99 0
3 0.412 0.216 0.309 0.351 2.528 99 0.013
4 9.089 5.448 0.418 0.302 16.04 99 0

Different

5 12.928 0.294 12.03 0.342 19.491 99 0

Table 10.36 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether all customers have the same priority or not, strategy 2

provides better solutions in terms of tour balance, customers' dissatisfaction and arrival

time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.37.



- 231 -

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 59.456 3.87 63.069 1.61 -8.65 99 0
2 14.73 2.265 37.38 1.797 -81.176 99 0
3 0.449 0.298 0.147 0.286 7.78 99 0
4 279.938 131.424 6.675 2.701 20.758 99 0

The Same

5 13.046 0.647 11.851 0.29 16.604 99 0
1 57.281 2.432 58.479 12.283 -0.978 99 0.331
2 14.01 1.396 33.77 7.558 -25.865 99 0
3 0.412 0.216 0.294 0.323 2.85 99 0.005
4 9.089 5.448 0.31 0.294 16.033 99 0

Different

5 12.928 0.294 11.802 0.562 17.82 99 0

Table 10.37 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms number of vehicles needed. Similarly,

whether all customers have the same priority or not, strategy 2 provides better solutions

in terms of tour balance, customers' dissatisfaction and arrival time of the last vehicle.

When all customers have the same priority, strategy 1 provides better solutions in terms

of travel time as well.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.38.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 72.54 2.967 63.069 1.61 28.59 99 0
2 33.04 4.122 37.38 1.797 -9.467 99 0
3 0.276 0.271 0.147 0.286 3.293 99 0.001
4 240.18 121.072 6.675 2.701 19.382 99 0

The Same

5 12.375 0.344 11.851 0.29 11.543 99 0
1 72.854 1.718 58.479 12.283 11.703 99 0
2 33.64 2.41 33.77 7.558 -0.163 99 0.871
3 0.309 0.351 0.294 0.323 0.34 99 0.735
4 13.603 9.815 0.31 0.294 13.555 99 0

Different

5 12.03 0.342 11.802 0.562 3.305 99 0.001

Table 10.38 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As can be seen from the results,  whether or not all  customers share the same priority,

strategy 3 provides better solutions in terms of travel time, customers' dissatisfaction and

arrival  time  of  the  last  vehicle.  If  all  customers  have  the  same  priority,  strategy  2  also
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provides better solutions in terms of number of vehicles needed, and strategy 3 provides

better solutions in terms of tour balance.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.39.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 72.54 2.967 72.937 2.7 -0.925 99 0.357
2 33.04 4.122 32.16 3.936 1.532 99 0.129
3 0.276 0.271 0.276 0.261 0 99 1
4 240.18 121.072 5.629 0.611 19.372 99 0

The Same

5 12.375 0.344 12.322 0.404 1.027 99 0.307
1 72.854 1.718 72.419 3.433 1.144 99 0.255
2 33.64 2.41 32.82 2.091 2.638 99 0.01
3 0.309 0.351 0.187 0.247 2.836 99 0.006
4 13.603 9.815 0.345 0.616 13.481 99 0

Different

5 12.03 0.342 12.1 0.272 -1.726 99 0.087

Table 10.39 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As can be seen from the results,  whether or not all  customers share the same priority,

strategy 4 provides better solutions in terms of customers' dissatisfaction. When each

customer has a different priority strategy 4 provides better solutions in term of number of

vehicles needed and tour balance, as well.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.40.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 63.069 1.61 65.885 1.274 -14.827 99 0
2 37.38 1.797 39.5 1.078 -9.228 99 0
3 0.147 0.286 0.047 0.005 3.501 99 0.001
4 217.02 87.821 5.187 0.791 24.103 99 0

The Same

5 11.851 0.29 11.937 0.143 -2.658 99 0.009
1 58.479 12.283 64.9 2.162 -5.216 99 0
2 33.77 7.558 36.86 2.697 -3.959 99 0
3 0.294 0.323 0.37 0.339 -1.635 99 0.105
4 10.079 9.55 0.41 0.375 10.08 99 0

Different

5 11.802 0.562 12.053 0.422 -3.634 99 0

Table 10.40 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities



- 233 -

As can be seen from the results, when all customers have the same priority, strategy 3

provides better solutions in terms of travel time, number of vehicles needed and arrival

time of last vehicle, while strategy 5 provides better solutions in term of customers'

dissatisfaction.

10.7.3.1 Conclusions

Table 10.41 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +
2 +
3 +
4 +

The Same

5 +
1 +   +
2 +
3 +
4 +  + +

Different

5 +

Table 10.41 - Best strategy for each of the objective functions

As can be seen from Table 10.41, whether all customers have the same priority or not,

objective functions 1, travel time, and 2, number of vehicles needed, are obtained using

strategy 1. Objective function 3 is best obtained by using strategy 3.

10.7.4. Strategies Comparison – VE-ABC algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.42.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 62.574 2.528 78.716 2.862 -40.741 99 0
2 14.6 1.583 34.23 1.874 -79.126 99 0

The Same

3 0.505 0.273 0.278 0.301 5.172 99 0
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Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

4 5625.337 1649.478 10.996 6.71 34.049 99 0
5 14.828 0.707 12.265 0.453 30.287 99 0
1 51.812 17.456 79.773 2.033 -16.1 99 0
2 13.77 2.733 34.4 2.361 -57.21 99 0
3 0.659 0.353 0.288 0.27 7.668 99 0
4 224.849 89.19 0.427 0.289 25.153 99 0

Different

5 14.345 2.26 12.12 0.409 9.784 99 0

Table 10.42 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether all customers have the same priority or not, strategy 2

provides better solutions in terms of tour balance, customers’ dissatisfaction, and arrival

time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.43.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 62.574 2.528 63.547 2.61 -2.888 99 0.005
2 14.6 1.583 34.71 3.361 -54.262 99 0
3 0.505 0.273 0.326 0.308 4.606 99 0
4 5625.337 1649.478 10.472 8.964 34.004 99 0

The Same

5 14.828 0.707 12.069 0.477 30.767 99 0
1 51.812 17.456 63.372 2.33 -6.5 99 0
2 13.77 2.733 33.47 3.096 -45.959 99 0
3 0.659 0.353 0.32 0.331 7.002 99 0
4 224.849 89.19 0.406 0.299 25.16 99 0

Different

5 14.345 2.26 12.281 0.444 8.982 99 0

Table 10.43 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether all customers have the same priority or not, strategy 3

provides better solutions in terms of tour balance, customers’ dissatisfaction, and arrival

time of the last vehicle.
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The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.44.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 78.716 2.862 63.547 2.61 38.245 99 0
2 34.23 1.874 34.71 3.361 -1.223 99 0.224
3 0.278 0.301 0.326 0.308 -1.143 99 0.256
4 357.507 218.147 10.472 8.964 15.929 99 0

The Same

5 12.265 0.453 12.069 0.477 2.865 99 0.005
1 79.773 2.033 63.372 2.33 49.484 99 0
2 34.4 2.361 33.47 3.096 2.457 99 0.016
3 0.288 0.27 0.32 0.331 -0.787 99 0.433
4 13.89 9.408 0.406 0.299 14.285 99 0

Different

5 12.12 0.409 12.281 0.444 -2.887 99 0.005

Table 10.44 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As can be seen from the results, strategy 3 provides better solutions in terms of travel

time and customers' dissatisfaction, whether all customers have the same priority or not.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.45.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 78.716 2.862 79.326 1.982 -1.701 99 0.092
2 34.23 1.874 34.1 2.607 0.4 99 0.69
3 0.278 0.301 0.206 0.197 1.997 99 0.049
4 357.507 218.147 10.192 3.417 15.923 99 0

The Same

5 12.265 0.453 12.28 0.373 -0.252 99 0.801
1 79.773 2.033 74.508 10.636 4.972 99 0
2 34.4 2.361 31.93 5.044 4.604 99 0
3 0.288 0.27 0.356 0.263 -1.862 99 0.066
4 13.89 9.408 0.48 0.322 14.189 99 0

Different

5 12.12 0.409 12.139 0.476 -0.292 99 0.771

Table 10.45 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As can be seen from the results, when all customers have the same priority, Strategy 4

provides better solutions in terms of tour balance and customers' dissatisfaction. When

each customer has a different priority, strategy 4 provides better solutions in terms of

travel time, number of vehicles and customers' dissatisfaction.
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The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.46.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 63.547 2.61 63.902 2.405 -0.956 99 0.341
2 34.71 3.361 33.93 4.344 1.363 99 0.176
3 0.326 0.308 0.268 0.257 1.622 99 0.108
4 340.457 291.438 6.914 2.242 11.464 99 0

The Same

5 12.069 0.477 11.941 0.412 2.03 99 0.045
1 63.372 2.33 63.653 1.841 -0.909 99 0.365
2 33.47 3.096 32.2 4.355 2.298 99 0.024
3 0.32 0.331 0.216 0.277 2.692 99 0.008
4 13.196 9.725 0.359 0.376 13.268 99 0

Different

5 12.281 0.444 12.165 0.341 2.033 99 0.045

Table 10.46 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As can be seen from the results, whether all customers have the same priority or each

customer has a different priority, for objective function 4 and 5, the best solutions are

obtained using strategy 5. When each customer has a different priority, for objectives 2

and 3, the best solutions are obtained using strategy 5, as well.

10.7.4.1 Conclusions

Table 10.47 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomes Priority Objective
Function 1 2 3 4 5

1 +
2 +
3 + +
4 +

The Same

5 +
1 +
2 +
3 + +
4 +  + +

Different

5 + + +

Table 10.47 - Best strategy for each of the objective functions
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As can be seen from Table 10.47, whether or not all customers have the same priority,

objective functions 1, travel time, and 2, number of vehicles needed, are best obtained by

using strategy 1. Objective functions 3, tour balance, 4, customers’ dissatisfaction, and 5,

arrival time of the last vehicle, are obtained by using strategy 5.

10.7.5. Algorithms Comparison

Since in the real-world, information on travel time and customers’ demands are not

known in advance, strategy 5 has to be used. Table 10.24 compares the results obtained

for each of the five objectives, using paired t-tests, functions by each one of the three

algorithms when applying the 3rd strategy. For each objective function, the best value

obtained is highlighted in red.

AlgorithmCustomer’s
Priority Objective Function Imp. VEGA SPEA2 VE-ABC

1 64.833 50.235 59.456
2 15.33 9.92 14.73
3 0.64 0.643 0.449
4 54.925 196.174 8.611

The Same

5 14.364 14.674 13.046
1 77.627 49.383 57.281
2 35.42 9.98 14.01
3 0.351 0.656 0.412
4 0.549 5.007 0.28

Different

5 12.491 14.349 12.928

Table 10.48 - Comparison of the 5th strategy used in all three algorithms

As it can be seen, whether all customers have the same priority or not, objective

function 1, travel time, and objective function 2, number of vehicles needed, , are best

obtained using the SPEA2 algorithm, while objective functions 3, tour balance, and 4,

customers' dissatisfaction are best obtained using the VE-ABC algorithm.

When all customers have the same priority, objective function 5, arrival time of last

vehicle, is best obtained by using the VE-ABC algorithm. When each customer has a

different priority, objective function 5 is best obtained by using the improved improved

VEGA algorithm.
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10.7.6. Conclusions

For all three algorithms, whether all customers have the same priority or not, objective

functions 1, travel time, and 2, number of vehicles needed, are best obtained using

strategy 1. Objective functions 3, tour balance, 4, customers’ dissatisfaction, and 5,

arrival  time  of  the  last  vehicle,  are  best  obtained  either  by  using  strategy  3  or  by  using

strategy 5.

Also, in all objective function, except the 3rd, tour balance, better solutions are obtained

when each customer has a different priority.

Since in the real-world, information on travel time and customers’ demands are not

known in advance, strategy 5 has to be used.

10.8. Case Study 3 – Israel

In the first case study the test scenario is defined as follows:

1. Network: Israeli transportation network.

2. Dissatisfaction function: It is assumed that the dissatisfaction functions of all

customers are linear, meaning
1
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The  test  scenario  is  solved  100  times.  For  the  first  50  times,  it  is  assumed  that  all

customers have the same priority. Under this assumption, the test scenario is solved 100

times using each of the 5 strategies described earlier. In the next 50 times, it is assumed

that  each  customer  has  a  priority  equal  to  his  demand.  Under  this  assumption,  the  test

scenario is solved 10 times using each of the 5 strategies described earlier.

10.8.1. Priority Comparison

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  total  travel  time  obtained  when  all  customers  have  the  same  priority  vs.  the  travel

time obtained when each customer has a different priority for each of the five strategies.

The results are summarized in Table 10.49.
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 74.974 5.924 72.845 3.976 0.901 99 0.391
2 96.128 3.969 90.521 23.406 0.703 99 0.5
3 86.641 8.965 95.254 7.626 -2.329 99 0.044
4 95.456 7.829 93.787 6.484 0.5 99 0.626

VEGA

5 84.384 7.974 90.053 16.162 -1.204 99 0.256
1 98.488 9.378 91.669 3.735 2.743 99 0.022
2 104.88 23.569 106.365 12.749 -0.147 99 0.888
3 92.095 19.482 99.452 2.965 -1.157 99 0.277
4 115.649 7.46 107.252 12.717 1.761 99 0.111

SPEA2

5 86.673 15.228 97.353 8.663 -1.946 99 0.084
1 103.968 16.345 115.347 6.932 -1.98 99 0.08
2 134.079 6.567 131.377 6.612 0.793 99 0.45
3 90.844 17.594 95.083 18.005 -0.432 99 0.677
4 131.438 6.422 128.261 9.603 0.786 99 0.454

VE-ABC

5 93.226 18.392 100.054 3.977 -1.106 99 0.299

Table 10.49 – Paired T-Test results for comparison of the total travel time for all three algorithms

when all customers have the same priority vs. each customer has a different priority

For  the  improved  VEGA  algorithm,  as  evident  from  the  results,  for  strategy  3  there

exists a significant difference in travel time, which is lower when all customers have the

same priority. For the SPEA2 algorithm, there is a significant difference in the travel time

only for strategy 1, which is lower when each customer has a different priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the number of vehicles needed when all customers have the same priority vs. the number

of vehicles needed when each customer has a different priority, for each of the five

strategies. The results are summarized in Table 10.50.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 8.622 1.153 8.01 0.787 1.244 99 0.243
2 14.747 1.334 14.284 2.861 0.478 99 0.646
3 15.991 2.464 17.878 1.116 -2.374 99 0.044
4 15.154 1.789 14.45 1.504 1.172 99 0.273

VEGA

5 15.584 1.686 16.791 2.981 -1.208 99 0.261
1 13.339 1.825 12.707 1.202 1.154 99 0.28
2 18.105 2.346 18.789 2.727 -0.459 99 0.655
3 19.503 3.212 19.296 0.854 0.17 99 0.869
4 18.662 1.019 17.738 2.529 0.863 99 0.41

SPEA2

5 17.628 2.596 19.914 1.13 -2.724 99 0.021
1 13.105 2.53 14.513 1.754 -1.497 99 0.169
2 21.824 1.367 21.11 1.288 1.261 99 0.238
3 18.419 4.148 18.366 3.572 0.101 99 0.921
4 21.181 1.33 20.657 1.409 0.898 99 0.393

VE-ABC

5 18.592 3.484 19.341 1.144 -0.811 99 0.437
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Table 10.50 – Paired T-Test results for comparison of the number of vehicles needed for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as apparent from the results for strategy 3, there is a

significant difference in the number of vehicles needed, which is lower when all

customers  have  the  same  priority.  For  the  SPEA2  algorithm,  for  strategy  5  there  is  a

significant difference in travel time, which, again, is lower when all customers have the

same priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  balance  of  the  tours  when  all  customers  have  the  same  priority  vs.  the  number  of

vehicles needed when each customer has a different priority, for each of the five

strategies. The results are summarized in Table 10.51.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 2.323 1.089 1.714 0.667 1.066 99 0.313
2 1.535 0.539 1.428 0.752 0.284 99 0.782
3 1.007 0.531 0.8 0.554 0.388 99 0.705
4 1.602 0.928 1.495 0.381 0.463 99 0.655

VEGA

5 1.048 0.525 0.715 0.147 1.641 99 0.134
1 0.947 0.488 0.929 0.597 -0.442 99 0.668
2 1.091 0.485 1.163 0.424 -0.03 99 0.976
3 0.446 0.081 0.713 0.117 -2.989 99 0.016
4 1.303 0.456 1.319 0.51 0.267 99 0.796

SPEA2

5 0.722 0.26 0.694 0.414 -0.716 99 0.49
1 1.681 1.06 1.513 0.526 0.17 99 0.868
2 0.691 0.458 1.005 0.244 -1.249 99 0.242
3 0.713 0.697 0.855 0.174 -0.346 99 0.74
4 1.107 0.411 0.681 0.404 2.158 99 0.057

VE-ABC

5 5.463 9.673 0.873 0.382 1.466 99 0.176

Table 10.51 – Paired T-Test results for comparison of the balance of the tours for all three

algorithms when all customers have the same priority vs. each customer has a different priority

Only for the SPEA2 algorithm with strategy 3 shows a significant difference in the tour

balance, which is lower when all customers have the same priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the total dissatisfaction of the customers when all customers have the same priority vs.

the total dissatisfaction of the customers when each customer has a different priority for

each of the five strategies. The results are summarized in Table 10.52.
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 3026.267 1079.539 4.606 2.096 8.851 99 0
2 180.668 185.374 0.121 0.154 3.079 99 0.011
3 989.097 510.017 0.115 0.174 6.13 99 0.002
4 173.122 241.857 0.177 0.135 2.264 99 0.049

VEGA

5 990.146 476.367 0.218 0.288 6.572 99 0.002
1 81.914 76 0.179 0.17 3.407 99 0.009
2 38.053 20.122 0.008 0.058 5.989 99 0.001
3 348.95 175.098 0.122 -0.021 6.303 99 0.002
4 34.289 7.813 0.059 0.07 13.919 99 0.001

SPEA2

5 516.48 338.355 0.075 0.122 4.826 99 0.003
1 3094.087 1660.215 2.947 1.204 5.89 99 0
2 48.242 10.91 0.151 0.033 13.881 99 0.001
3 949.718 594.273 0.013 0.234 5.052 99 0.001
4 66.352 56.454 0.074 0.037 3.721 99 0.006

VE-ABC

5 777.402 518.056 0.027 0.135 4.746 99 0

Table 10.52 – Paired T-Test results for comparison of the total dissatisfaction of the customers for

all three algorithms when all customers have the same priority vs. each customer has a different

priority

For all algorithms and for all strategies, there are significant differences in the total

dissatisfaction of the customers, which are lower when each customer has a different

priority.

For each of our three algorithms, five paired-samples t-test were conducted to compare

the  arrival  time  of  the  last  vehicle  when  all  customers  have  the  same  priority  vs.  the

arrival time of the last vehicle when each customer has a different priority for each of the

five strategies. The results are summarized in Table 10.53.
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 21.31 0.807 21.348 1.001 0.068 99 0.949
2 20.092 0.682 19.275 2.021 1.065 99 0.316
3 21.682 0.631 21.199 0.71 1.635 99 0.136
4 19.986 1.206 20.17 0.947 -0.399 99 0.696

VEGA

5 21.241 1.517 20.682 1.781 0.775 99 0.461
1 19.45 0.167 19.448 0.003 0.302 99 0.772
2 18.346 2.258 19.282 1.394 -0.966 99 0.362
3 20.571 2.678 21.083 0.53 -0.537 99 0.604
4 19.268 1.2 19.103 1.261 0.241 99 0.814

SPEA2

5 20.972 2.753 20.792 1.994 0.106 99 0.918
1 21.764 1.463 21.158 1.35 0.7 99 0.502
2 19.823 0.733 19.812 0.686 -0.019 99 0.986
3 20.283 2.173 20.438 1.976 -0.145 99 0.886
4 19.746 0.941 19.666 0.273 0.071 99 0.944

VE-ABC

5 20.794 2.415 20.999 0.662 -0.418 99 0.686

Table 10.53 – Paired T-Test results for comparison of the arrival time of the last vehicle for all

three algorithms when all customers have the same priority vs. each customer has a different priority

For all algorithms and for all strategies, there are no significant differences in the arrival

time of the last vehicle.

10.8.1.1 Conclusions

For the fourth objective function, customers’ dissatisfaction, the best solution is

obtained when each customer has a different objective function, for all strategies and all

algorithms.

For the other objectives, no significant differences were found between the results

obtained when all customers have the same priority, and the results obtained when each

customer has a different priority, for all strategies and algorithms

10.8.2. Strategies Comparison – VEGA algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.54.
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Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 74.917 5.738 96.128 3.976 -7.58 99 0.002
2 8.539 1.113 14.739 1.428 -10.464 99 0
3 2.33 1.112 1.367 0.627 2.475 99 0.033
4 93.131 33.104 5.591 5.781 8.558 99 0

The Same

5 21.304 0.749 19.984 0.577 4.192 99 0.004
1 72.816 3.989 90.538 23.562 -2.345 99 0.043
2 8.177 0.859 14.223 2.919 -6.017 99 0.001
3 1.693 0.67 1.421 0.806 1.102 99 0.297
4 4.631 2.078 0.115 0.109 7.178 99 0.001

Different

5 21.347 0.945 19.4 2.045 2.867 99 0.02

Table 10.54 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As  evident  from  the  results,  whether  or  not  all  customers  have  the  same  priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Similarly, whether all customers have the same priority or not, strategy 2

provides better solutions in terms of customers’ dissatisfaction and arrival time of the last

vehicle. When all customers have the same priority, strategy 2 also provides better

solutions in terms of tour balance.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.55.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 74.998 5.735 86.641 9.06 -2.946 99 0.015
2 8.668 1.047 15.887 2.608 -6.66 99 0
3 2.289 1.21 0.908 0.576 4.61 99 0.002
4 93.073 33.216 30.392 15.752 5.641 99 0.001

The Same

5 21.396 0.759 21.722 0.652 -0.957 99 0.363
1 72.759 4.011 95.29 7.676 -7.574 99 0.001
2 8.167 0.909 17.985 1.197 -25.211 99 0.002
3 1.845 0.646 0.936 0.486 4.146 99 0
4 4.732 2.031 0.106 0.072 7.059 99 0.001

Different

5 21.293 1.068 21.173 0.717 0.413 99 0.687

Table 10.55 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As may be seen from the results,  whether or not all  customers have the same priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles
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needed. Similarly, whether all customers have the same priority or not, strategy 2

provides better solutions in terms of tour balance and customers’ dissatisfaction.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.56.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 96.015 3.923 86.604 9.079 3.516 99 0.009
2 14.702 1.358 15.968 2.535 -1.16 99 0.275
3 1.385 0.582 0.974 0.501 2.405 99 0.039
4 5.482 5.633 30.411 15.647 -5.492 99 0.001

The Same

5 20.003 0.688 21.591 0.734 -5.28 99 0.001
1 90.435 23.557 95.391 7.713 -0.609 99 0.557
2 14.319 2.882 17.997 1.211 -3.553 99 0.005
3 1.34 0.729 0.883 0.429 1.87 99 0.094
4 0.038 0.184 0.228 0.117 -2.626 99 0.027

Different

5 19.319 1.894 21.123 0.764 -2.729 99 0.023

Table 10.56 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As  evident  from  the  results,  whether  or  not  all  customers  have  the  same  priority,

strategy 2 provides better solutions only in terms of customer dissatisfaction and arrival

time of the last  vehicle.  When all  customers have the same priority,  strategy 3 provides

better  solutions  in  terms  of  travel  time  and  tour  balance.  When  each  customer  has

different priorities, strategy 2 provides better solutions in terms of the number of vehicles

needed.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.57.
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Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t Df Sig.

1 96.13 3.931 95.468 7.887 0.211 99 0.838
2 14.751 1.381 15.093 1.781 -0.52 99 0.618
3 1.442 0.548 1.623 1.004 -0.464 99 0.653
4 5.536 5.691 5.361 7.345 0.068 99 0.949

The Same

5 19.944 0.606 19.967 1.16 0.184 99 0.858
1 90.565 23.404 93.932 6.541 -0.431 99 0.676
2 14.352 2.793 14.386 1.653 -0.094 99 0.928
3 1.429 0.796 1.373 0.282 -0.106 99 0.92
4 0.106 0.081 0.047 0.144 -0.44 99 0.668

Different

5 19.349 2.022 20.213 0.924 -1.146 99 0.281

Table 10.57 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As may be seen from the results, no significant difference was found for any of the

objective functions.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.58.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 86.78 8.919 84.353 8.035 0.648 99 0.535
2 15.923 2.528 15.607 1.861 0.26 99 0.801
3 0.954 0.519 0.935 0.478 -0.098 99 0.924
4 30.452 15.672 30.4 14.666 -0.007 99 0.993

The Same

5 21.619 0.687 21.203 1.508 0.647 99 0.535
1 95.238 7.577 89.941 16.223 1.058 99 0.316
2 17.85 1.28 16.752 2.833 1.177 99 0.268
3 0.83 0.533 0.664 0.148 1.127 99 0.29
4 0.16 0.17 0.107 0.197 0.018 99 0.986

Different

5 21.142 0.622 20.654 1.811 0.637 99 0.54

Table 10.58 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As seen  from the  results,  no  significant  difference  was  found for  any  of  the  objective

functions.
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10.8.2.1 Conclusions

Table 10.59 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +
2 +
3  + +  +
4  + +

The Same

5  + +
1 +
2 +
3  + +
4  +   + +

Different

5  +   + +

Table 10.59 - Best strategy for each of the objective functions

As can be seen from Table 10.59, when all customers have the same priority, objective

functions 1, travel time, and 2, number of vehicles needed, are obtained by using strategy

1. Objective 3, tour balance, 4, customers’ dissatisfaction, and 5, arrival time of the last

vehicle, is obtained by using strategy 4.

When each customer has a different priority, objective functions 1, travel time, and 2,

number of vehicles needed, are obtained by using strategy 1. Objective 3, tour balance, 4,

customer's dissatisfaction, and 5, arrival time of the last vehicle, are obtained by using

strategy 5.

10.8.3. Strategies Comparison – SPEA2 algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.60.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 98.328 9.458 104.846 23.48 -0.777 99 0.459The Same
2 13.254 1.786 18.214 2.458 -4.298 99 0.002



- 247 -

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

3 0.764 0.421 1.187 0.547 -1.913 99 0.087
4 2.514 2.364 1.223 0.521 1.647 99 0.133
5 19.635 0.227 18.208 2.198 1.73 99 0.12
1 91.628 3.761 106.35 12.629 -3.561 99 0.006
2 12.755 1.306 18.684 2.75 -6.902 99 0.002
3 0.893 0.46 1.222 0.465 -0.619 99 0.553
4 0.055 0.15 0.011 -0.06 1.869 99 0.096

Different

5 19.549 0.058 19.174 1.382 0.686 99 0.509

Table 10.60 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As reflected in the results, whether or not all customers have the same priority, strategy

1 provides better solutions in terms of the number of vehicles needed. When each

customer has a different priority, strategy 1 provides better solutions in terms of travel

time as well.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.61.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 98.349 9.374 92.17 19.5 0.935 99 0.376
2 13.222 1.73 19.537 3.158 -5.424 99 0.002
3 0.901 0.434 0.581 0.229 2.55 99 0.032
4 2.493 2.288 10.69 5.37 -3.961 99 0.004

The Same

5 19.642 0.306 20.585 2.643 -1.268 99 0.239
1 91.589 3.763 99.389 2.978 -4.847 99 0.001
2 12.687 1.259 19.394 1.033 -13.863 99 0.002
3 0.929 0.592 0.802 0.126 1.162 99 0.275
4 0.185 0.041 0.143 0.056 2.009 99 0.074

Different

5 19.437 0.165 21.098 0.362 -11.042 99 0.001

Table 10.61 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As may be seen from the results,  whether or not all  customers have the same priority,

strategy 1 provides better solutions in terms of the number of vehicles needed. When all

customers have the same priority, strategy 1 provides better results in terms of customers’

dissatisfaction. When each customer has a different priority, strategy 1 provides better

solutions in terms of travel time and arrival time of the last vehicle.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.62.
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Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 104.895 23.389 92.185 19.457 1.551 99 0.154
2 18.285 2.421 19.471 3.248 -1.243 99 0.246
3 1.181 0.447 0.418 0.069 3.858 99 0.004
4 1.141 0.571 10.672 5.361 -5.644 99 0.001

The Same

5 18.314 2.272 20.669 2.636 -2.116 99 0.061
1 106.281 12.711 99.516 2.964 1.582 99 0.146
2 18.781 2.795 19.276 0.873 -0.618 99 0.553
3 1.137 0.462 0.668 0.202 2.565 99 0.03
4 0.125 0.097 0.029 0.038 -0.045 99 0.964

Different

5 19.182 1.453 20.99 0.378 -4.409 99 0.002

Table 10.62 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As seen from the results, whether all customers have the same priority or each customer

has a different priority, a significant difference was found for tour balance, which is

lower in strategy 3. When each customer has his own priority, a significant difference

was found for the arrival time at the last customer, which is earlier in strategy 2. A

significant difference was also found for customers’ dissatisfaction, which is lower in

strategy 2 when all customers have the same priority.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.15.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 104.934 23.486 115.673 7.429 -1.422 99 0.188
2 18.202 2.377 18.578 0.884 -0.425 99 0.683
3 1.078 0.462 1.258 0.559 -0.91 99 0.387
4 1.216 0.576 1.018 0.334 0.548 99 0.598

The Same

5 18.399 2.2 19.273 1.103 -1.715 99 0.12
1 106.252 12.613 107.272 12.635 -0.236 99 0.82
2 18.78 2.7 17.776 2.548 0.937 99 0.372
3 1.206 0.585 1.232 0.441 -0.644 99 0.538
4 0.007 0.13 0.064 0.066 1.28 99 0.232

Different

5 19.185 1.369 19.099 1.173 0.245 99 0.814

Table 10.63 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As demonstrated by the results, whether all customers have the same priority or each

customer  has  a  different  priority,  no  significant  difference  was  found  for  any  of  the

objective functions.
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The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.16.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 92.027 19.434 86.593 15.166 0.562 99 0.591
2 19.466 3.112 17.766 2.537 1.129 99 0.289
3 0.51 0.099 0.671 0.377 -1.268 99 0.237
4 10.722 5.297 15.877 10.311 -1.336 99 0.214

The Same

5 20.66 2.695 20.791 2.761 -0.197 99 0.849
1 99.35 3.041 97.33 8.619 0.727 99 0.488
2 19.335 0.917 20.097 1.089 -1.411 99 0.191
3 0.686 0.272 0.843 0.386 -0.034 99 0.974
4 0.038 0.01 0.04 0.167 -0.737 99 0.48

Different

5 21.038 0.537 20.729 2.118 0.373 99 0.719

Table 10.64 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As reflected by the results, whether all customers have the same priority or each

customer  has  a  different  priority,  no  significant  difference  was  found  for  any  of  the

objective functions.

10.8.3.1 Conclusions

Table 10.65 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 + + +  +
2 +
3 + +
4 + +  +

The Same

5 + + + + +
1 +  +
2 +
3 +   +   +
4  + +  + +

Different

5 + +  +

Table 10.65 - Best strategy for each of the objective functions
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As can be seen from Table 10.65, when all customers have the same priority, objective

functions 1, travel time, and 2, number of vehicles needed, 4, customers’ dissatisfaction,

and 5, arrival time of the last vehicle, are obtained by using strategy 1. Objective 3, tour

balance, is obtained by using either strategy 3 or strategy 5.

When each customer has a different priority, objective functions 1, travel time, and 2,

number of vehicles, 3, tour balance, and 5, arrival time of the last vehicle needed, are

obtained by using strategy 1. Objective 4, customers’ dissatisfaction, is obtained by using

either strategy 3 or strategy 5.

10.8.4. Strategies Comparison – VE-ABC algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.66.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 103.991 16.358 133.988 6.604 -5.079 99 0
2 13.053 2.565 21.795 1.266 -14.567 99 0
3 1.646 0.965 0.789 0.474 2.268 99 0.05
4 95.189 50.974 1.575 0.304 5.797 99 0.002

The Same

5 21.765 1.512 19.756 0.783 3.306 99 0.009
1 115.402 7.002 131.389 6.51 -5.009 99 0.002
2 14.529 1.618 21.148 1.265 -9.849 99 0
3 1.6 0.647 0.915 0.161 2.577 99 0.03
4 3.047 1.223 0.135 -0.037 7.67 99 0.002

Different

5 21.279 1.26 19.948 0.662 3.129 99 0.011

Table 10.66 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As demonstrated  by  the  results,  when  all  customers  have  the  same priority,  strategy  1

provides better solutions in terms of travel time and number of vehicles needed.

Similarly, strategy 2 provides better solutions in terms of tour balance, customers’

dissatisfaction and arrival time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.67.
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Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 104.116 16.328 90.888 17.502 1.724 99 0.117
2 13.051 2.536 18.468 4.107 -3.389 99 0.009
3 1.539 0.944 0.829 0.529 2.01 99 0.076
4 95.186 51.045 29.172 18.299 3.374 99 0.01

The Same

5 21.601 1.524 20.208 2.26 1.603 99 0.142
1 115.243 6.968 94.899 18.112 3.46 99 0.009
2 14.545 1.74 18.317 3.51 -3.784 99 0.005
3 1.492 0.686 0.812 0.213 3.579 99 0.005
4 2.994 1.166 0.073 0.132 7.279 99 0

Different

5 21.3 1.297 20.403 2.01 0.884 99 0.399

Table 10.67 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

Based  on  the  results,  when  all  customers  have  the  same  priority,  strategy  1  provides

better solutions in terms of the number of vehicles needed. Under the same conditions,

strategy 3 provides better solutions in terms of customers’ dissatisfaction. When each

customer has different priority, strategy 1 provides better solutions in terms of the

number of vehicles needed and strategy 3 provides better solutions for tour balance and

customers' dissatisfaction.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.68.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 133.994 6.586 90.899 17.496 8.41 99 0.002
2 21.893 1.41 18.491 4.158 2.684 99 0.026
3 0.798 0.599 0.792 0.563 -0.131 99 0.899
4 1.539 0.239 29.21 18.353 -4.838 99 0.001

The Same

5 19.836 0.683 20.375 2.346 -0.593 99 0.567
1 131.349 6.508 95.055 18.105 4.948 99 0.003
2 21.118 1.274 18.325 3.559 2.169 99 0.057
3 1.034 0.076 0.806 0.215 1.561 99 0.154
4 0.095 0.105 0.06 0.229 -0.674 99 0.517

Different

5 19.783 0.627 20.46 2.106 -0.755 99 0.471

Table 10.68 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As shown in the results, whether or not all customers have the same priority, strategy 3

provides better solutions in terms of travel time. Strategy 2 provides better solutions in

terms  of  customers’  dissatisfaction,  when  all  customers  have  the  same  priority  and

strategy 3 provides better solutions in terms of number of vehicles needed.
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The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.69.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 134.024 6.593 131.596 6.335 0.817 99 0.433
2 21.838 1.244 21.109 1.243 0.969 99 0.357
3 0.835 0.617 1.077 0.393 -1.863 99 0.093
4 1.449 0.401 1.989 1.723 -0.969 99 0.358

The Same

5 19.926 0.74 19.7 1.077 0.167 99 0.872
1 131.484 6.625 128.319 9.714 0.863 99 0.413
2 21.249 1.394 20.589 1.487 0.942 99 0.37
3 1.044 0.259 0.607 0.424 1.793 99 0.104
4 0.119 0.124 0.016 0.037 0.8 99 0.445

Different

5 19.818 0.573 19.859 0.322 0.468 99 0.651

Table 10.69 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As reflected in the results, whether all customers have the same priority or each

customer has a different priority, no significant difference was found for any objective

function.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.70.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 90.824 17.516 93.046 18.414 -0.322 99 0.752
2 18.474 4.281 18.437 3.5 -0.002 99 1
3 0.78 0.509 5.412 9.818 -1.532 99 0.159
4 29.197 18.32 23.96 15.936 0.656 99 0.531

The Same

5 20.373 2.242 20.609 2.535 -0.457 99 0.659
1 94.99 18.101 99.951 3.93 -0.827 99 0.432
2 18.24 3.474 19.422 1.142 -0.856 99 0.414
3 0.876 0.292 0.913 0.298 -0.394 99 0.702
4 0.074 0.159 0.157 -0.005 0.191 99 0.853

Different

5 20.507 2.068 21.059 0.708 -0.975 99 0.356

Table 10.70 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As seen from the results, whether all customers have the same priority or each customer

has a different priority, no significant difference was found for any of the objective

functions.
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10.8.4.1 Conclusions

Table 10.71 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +   +   +
2 +
3 +  + +  +
4 + +

The Same

5 +  + +  +
1 +   +
2 +
3  + + + +
4  + + + +

Different

5  + +  +

Table 10.71 - Best strategy for each of the objective functions

As seen in Table 10.71, when all customers have the same priority, objective functions

1, travel time, and 2, number of vehicles needed, are obtained by using strategy 1.

Objective 3, tour balance, 4, customers’ dissatisfaction, and 5, arrival time of the last

vehicle, are best obtained by using either strategy 2 or strategy 4.

When each customer has a different priority, objective 2, number of vehicles is best

obtained using strategy 2. Objective functions 1, travel time, 3, tour balance, 4,

customers’ dissatisfaction and 5, arrival time of the last vehicle needed, are obtained by

using strategy 3.

10.8.5. Algorithms Comparison

Since in the real-world, information on travel time and customers’ demands are not

known in advance, strategy 3 has to be used. Table 10.72 compares the results obtained

for each of the five objectives, using paired t-tests, functions by each one of the three

algorithms when applying the 3rd strategy. For each objective function, the best value

obtained is highlighted in red.
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AlgorithmCustomer’s
Priority Objective Function Imp. VEGA SPEA2 VE-ABC

1 84.353 86.593 93.046
2 15.607 17.766 18.437
3 0.935 0.671 5.412
4 30.4 15.877 23.96

The Same

5 21.203 20.791 20.609
1 89.941 97.33 99.951
2 16.752 20.097 19.422
3 0.664 0.843 0.913
4 0.107 0.04 0.157

Different

5 20.654 20.729 21.059

Table 10.72 - Comparison of the 5th strategy used in all three algorithms

As may be seen, whether all customers have the same priority or not, objective 1, travel

time, and objective 2, number of vehicles needed are best obtained by using the improved

VEGA algorithm. Objective 4, customers' dissatisfaction is best obtained by using the

SPEA2 algorithm.

10.8.6. Conclusions

Since in the real-world, information on travel time and customers’ demands are not

known in advance,  strategy 5 has to be used. From the results  obtained, one should use

the improved VEGA algorithm, which for most objective functions returns the best

solutions.  When looking  at  the  different  strategies,  there  is  no  dominant  strategy  which

provides the best solution for most scenarios.

10.9. Case Study 4

In the second case study the test scenario is defined as follows:

1. Network: Israeli transportation network.

2. Dissatisfaction function: It is assumed that all customers don’t like the supplier to

arrive either early or late. Therefore, the dissatisfaction functions of all customers are

in the form of
5
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The  test  scenario  is  solved  100  times.  In  the  first  50  times,  it  is  assumed  that  all

customers have the same priority. Under this assumption, the test scenario is solved 100

times using each of the 5 strategies described earlier. In the next 50 times, it is assumed
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that  each  customer  has  a  priority  equal  to  his  demand.  Under  this  assumption,  the  test

scenario is solved 10 times using each of the 5 strategies described earlier.

10.9.1. Priority Comparison

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  total  travel  time  obtained  when  all  customers  have  the  same  priority  vs.  the  travel

time obtained when each customer has a different priority, for each of the five strategies.

The results are summarized in Table 10.73.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 74.415 4.496 115.336 6.93 -15.094 99 0.001
2 93.706 5.252 133.965 6.583 -16.923 99 0.001
3 96.545 4.561 90.816 17.427 0.915 99 0.384
4 95.298 5.347 131.458 6.299 -21.316 99 0

VEGA

5 92.853 6.377 93.129 18.483 -0.041 99 0.97
1 103.661 6.878 92.417 6.592 3.493 99 0.006
2 116.254 13.96 113.64 23.399 0.394 99 0.7
3 88.067 15.175 92.171 18.351 -0.633 99 0.542
4 117.739 16.571 117.688 16.552 0.999 99 0.344

SPEA2

5 82.621 27.741 98.836 4.102 -1.796 99 0.106
1 90.767 28.797 93.073 31.142 -0.153 99 0.882
2 134.134 4.239 134.21 7.174 0.037 99 0.97
3 105.067 10.563 97.619 5.944 1.868 99 0.095
4 136.467 5.37 137.561 7.623 -0.291 99 0.781

VE-ABC

5 96.543 17.545 100.716 13.303 -0.567 99 0.584

Table 10.73 – Paired T-Test resuls for comparison of the total travel time for all three algorithms

when all customers have the same priority vs. each customer has a different priority

For  the  improved  VEGA  algorithm,  as  seen  from  the  results,  for  strategy  1,  2  and  4,

there exists a significant difference in the solution obtained when all customers have the

same priority vs. the solution obtained when each customer has a different priority, which

is better when all customers have the same priority. For the SPEA2 algorithm, for

strategy 1 there exists a significant difference in the solution obtained when all customers

have the same priority vs. the solution obtained when each customer has a different

priority, which is better when each customer has a different priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the number of vehicles needed when all customers have the same priority vs. the number
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of vehicles needed when each customer has a different priority, for each of the five

strategies. The results are summarized in Table 10.74.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 8.408 0.753 14.536 1.704 -10.464 99 0.001
2 14.85 1.835 21.898 1.328 -9.391 99 0.001
3 17.684 0.74 18.407 4.158 -0.564 99 0.585
4 14.537 1.695 21.122 1.337 -14.178 99 0.001

VEGA

5 16.933 1.464 18.546 3.404 -1.191 99 0.265
1 13.727 1.096 12.579 1.409 2.01 99 0.077
2 19.589 1.098 19.327 3.098 0.225 99 0.829
3 19.1 2.125 19.914 1.658 -1.431 99 0.187
4 19.833 1.242 19.869 1.306 1 99 0.344

SPEA2

5 18.274 3.944 19.373 1.277 -0.838 99 0.425
1 11.735 3.556 11.022 4.14 0.386 99 0.709
2 21.788 1.127 21.837 1.022 -0.288 99 0.78
3 20.423 1.466 19.174 2.337 1.815 99 0.103
4 22.871 1.632 21.735 1.202 1.673 99 0.128

VE-ABC

5 19.35 2.701 18.778 2.36 0.372 99 0.719

Table 10.74 – Paired T-Test resuls for comparison of the number of vehicles needed for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as seen in the results, for strategies 1, 2 and 4, there

are significant differences in the number of vehicles needed, which is lower when all

customers have the same priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  balance  of  the  tours  when  all  customers  have  the  same  priority  vs.  the  number  of

vehicles needed when each customer has a different priority, for each of the five

strategies. The results are summarized in Table 10.75.
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 1.738 0.651 1.55 0.569 0.667 99 0.519
2 1.437 0.396 0.699 0.458 8.801 99 0.001
3 0.757 0.136 0.666 0.524 -0.24 99 0.816
4 1.372 0.659 1.062 0.434 1.812 99 0.104

VEGA

5 0.968 0.365 5.496 9.861 -1.442 99 0.183
1 0.774 0.185 0.897 0.143 -3.021 99 0.013
2 1.238 0.396 1.078 0.341 1.161 99 0.275
3 0.703 0.224 0.533 0.148 1.696 99 0.125
4 1.037 0.455 1.029 0.4 0.999 99 0.344

SPEA2

5 0.467 0.194 0.784 0.209 -3.224 99 0.012
1 1.551 0.677 6.272 13.275 -1.119 99 0.293
2 1.019 0.457 0.655 0.313 2.149 99 0.062
3 2.21 5.521 0.697 0.359 0.845 99 0.421
4 0.71 0.253 0.944 0.382 -0.345 99 0.739

VE-ABC

5 2.929 7.77 0.85 0.46 0.868 99 0.408

Table 10.75 – Paired T-Test results for comparison of the balance of the tours for all three

algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as may be seen from the results, for strategy 2,

there is a significant difference in the tour balance, which is lower (meaning more

balanced) when each customer has a different priority. For the SPEA2 algorithm, for

strategies 1 and 5, there is also a significant difference in the tour balance, which is lower

when  all  customers  have  the  same  priority.  As  for  the  VE-ABC  algorithm,  for  all

strategies there is a significant difference in the tour balance.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the total dissatisfaction of the customers when all customers have the same priority vs.

the total dissatisfaction of the customers when each customer has a different priority, for

each of the five strategies. The results are summarized in Table 10.76.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 60.446 42.088 3.039 1.229 4.255 99 0.003
2 0.767 0.696 1.431 0.411 -2.982 99 0.013
3 1.075 0.825 29.241 18.272 -4.862 99 0.002
4 0.548 0.698 2.101 1.688 -2.291 99 0.046

VEGA

5 29.526 15.461 23.993 15.882 0.69 99 0.508
1 433.871 383.07 0.287 0.147 3.578 99 0.005
2 156.154 24.675 0.048 0.08 19.93 99 0.002
3 1336.587 475.511 0.281 0.262 8.882 99 0.001
4 134.412 30.199 4.074 0.905 14.051 99 0.001

SPEA2

5 1159.944 758.856 0.224 0.125 4.832 99 0.001
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Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 6287.886 3250.649 6.563 3.637 6.11 99 0
2 281.695 116.615 0.313 0.205 7.623 99 0.002
3 2017.89 426.099 0.575 0.377 14.967 99 0.002
4 353.173 302.496 0.245 0.108 3.689 99 0.004

VE-ABC

5 1526.441 772.201 0.451 0.489 6.248 99 0.001

Table 10.76 – Paired T-Test results for comparison of the total dissatisfaction of customers for all

three algorithms when all customers have the same priority vs. each customer has a different priority

For the improved VEGA algorithm, as seen from the results,  for strategy 1,  there is  a

significant difference in total dissatisfaction, which is lower when each customer has a

different priority. For strategies 2, 3 and 4, there is a significant difference in total

dissatisfaction, which is lower when all customers have the same priority.

For  the  SPEA2  and  the  VE-ABC  algorithm,  in  all  strategies  there  is  a  significant

difference in the total dissatisfaction of customers obtained when all customers have the

same priority and when each customer has a different priority, which is lower when each

customer has a different priority.

For each of our three algorithms, five paired-samples t-tests were conducted to compare

the  arrival  time  of  the  last  vehicle  when  all  customers  have  the  same  priority  vs.  the

arrival time of the last vehicle when each customer has a different priority, for each of the

five strategies. The results are summarized in Table 10.77.

Same Priority Different PriorityAlgorithm Strategy M SD M SD t df Sig.

1 20.538 0.779 21.262 1.241 -1.141 99 0.281
2 20.133 0.757 19.882 0.719 0.597 99 0.565
3 21.032 0.859 20.301 2.197 0.958 99 0.364
4 19.768 0.208 19.766 0.972 0.076 99 0.941

VEGA

5 21.621 0.923 20.775 2.431 1.108 99 0.297
1 19.916 0.279 19.461 0.126 3.464 99 0.007
2 19.186 1.85 19.339 2.177 -0.395 99 0.702
3 20.374 2.3 19.792 2.627 0.468 99 0.653
4 19.253 1.806 19.195 1.756 0.999 99 0.345

SPEA2

5 19.321 3.914 20.582 0.313 -1.061 99 0.318
1 21.291 2.444 21.477 1.065 -0.056 99 0.958
2 19.779 0.717 19.775 0.521 0.049 99 0.963
3 22.56 1.972 21.013 0.498 2.311 99 0.045
4 20.178 0.502 20.114 0.87 0.116 99 0.908

VE-ABC

5 20.938 2.3 20.926 0.743 -0.066 99 0.95

Table 10.77 – Paired T-Test results for comparison of the arrival time of the last vehicle for all

three algorithms when all customers have the same priority vs. each customer has a different priority
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For  the  SPEA2  algorithm,  as  seen  in  the  results,  for  strategy  1,  there  is  a  significant

difference in the arrival time of the last vehicle, which is earlier when each customer has

a different priority. Similarly, for the VE-ABC algorithm, strategy 3 provides better

solutions when each customer has a different priority.

10.9.1.1 Conclusions

For the first objective, travel time, the second objective, number of vehicles needed, and

fourth objective function, customers’ dissatisfaction, the best solution is obtained when

all customers have the same priority, using the VEGA algorithm.

For the fourth objective function, customers’ dissatisfaction, when each customer has a

different priority, the best solution is obtained using the SPEA2 and VE-ABC algorithms

for all strategies.

For the other objectives, no significant differences were found between the results

obtained when all customers have the same priority, and the results obtained when each

customer has a different priority, for all strategies and algorithms

10.9.2. Strategies Comparison – VEGA algorithm

In order to examine the effect of each of the strategies of the algorithm's results several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.78.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 74.389 4.596 93.694 5.392 -10.82 99 0.001
2 8.306 0.662 14.851 1.799 -10.35 99 0.002
3 1.821 0.641 1.553 0.541 0.814 99 0.436
4 1.936 1.255 0.01 0.064 4.48 99 0.003

The Same

5 20.57 0.667 19.998 0.684 1.779 99 0.109
1 115.354 6.965 133.939 6.65 -5.318 99 0
2 14.509 1.761 21.814 1.335 -9.9 99 0.001
3 1.565 0.691 0.74 0.584 2.836 99 0.019
4 3.09 1.152 1.521 0.359 3.793 99 0.002

Different

5 21.16 1.315 19.856 0.836 2.779 99 0.022

Table 10.78 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities
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As shown in the results, whether or not all customers have the same priority, strategy 1

provides better solutions in terms of travel time and number of vehicles needed.

Similarly, whether all customers have the same priority or not, strategy 2 provides better

solutions in terms of customers' dissatisfaction. When each customer has a different

priority, strategy 2 provides better solutions in terms of tour balance and arrival time of

the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.79.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 74.464 4.508 96.481 4.721 -9.927 99 0.001
2 8.381 0.675 17.72 0.9 -25.363 99 0.002
3 1.819 0.695 0.77 0.293 4.569 99 0.002
4 1.956 1.327 0.101 0.058 4.468 99 0.003

The Same

5 20.557 0.677 21.149 0.881 -1.402 99 0.196
1 115.369 7.093 90.901 17.526 3.982 99 0.004
2 14.581 1.777 18.501 4.169 -2.994 99 0.015
3 1.503 0.604 0.76 0.532 3.445 99 0.007
4 3.048 1.152 29.186 18.338 -4.446 99 0

Different

5 21.256 1.302 20.339 2.166 1.073 99 0.308

Table 10.79 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As reflected in the results, whether or not all customers have the same priority, strategy

1 provides better solutions in terms of the number of vehicles needed. Similarly, whether

all customers have the same priority or not, strategy 3 provides better solutions in terms

of  tour  balance  and  customers’  dissatisfaction.  If  all  customers  have  the  same  priority,

strategy  1  provides  better  solutions  in  terms  of  travel  time,  but  if  each  customer  has  a

different priority, then better travel time is obtained by using strategy 3.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.80.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 93.803 5.308 96.484 4.649 -1.771 99 0.111
2 14.892 1.821 17.668 0.844 -4.41 99 0.002
3 1.566 0.48 0.723 0.308 4.65 99 0.002
4 0.082 0.001 0.022 0.06 -0.726 99 0.487

The Same

5 19.992 0.751 21.105 0.82 -3.049 99 0.014
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Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 133.976 6.656 90.879 17.472 8.409 99 0
2 21.774 1.405 18.572 4.143 2.683 99 0.025
3 0.785 0.518 0.854 0.537 -0.131 99 0.896
4 1.501 0.398 29.294 18.259 -4.84 99 0.002

Different

5 19.814 0.836 20.306 2.32 -0.591 99 0.569

Table 10.80 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As  shown  in  the  results,  if  all  customers  have  the  same  priority,  strategy  2  provides

better results in terms of the number of vehicles needed and arrival time at the last

customer, while strategy 3 provides better solutions in terms of tour balance. When each

customer has a different priority, strategy 2 provides better results in terms of customers’

dissatisfaction, while strategy 3 provides better solutions in terms of travel time and

number of vehicles needed.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.81.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 93.711 5.32 95.243 5.308 -0.689 99 0.511
2 14.873 1.828 14.548 1.62 0.36 99 0.728
3 1.532 0.516 1.377 0.549 0.328 99 0.749
4 0.11 0.041 0.095 0.06 0.455 99 0.66

The Same

5 20.039 0.686 19.807 0.312 1.404 99 0.193
1 134.083 6.642 131.538 6.28 0.819 99 0.432
2 21.884 1.279 21.266 1.336 0.969 99 0.357
3 0.828 0.462 0.972 0.303 -1.864 99 0.094
4 1.439 0.418 2.04 1.792 -0.971 99 0.359

Different

5 19.908 0.802 19.831 0.987 0.168 99 0.869

Table 10.81 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As demonstrated in the results, no significant differences were found between the two

strategies.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.82.
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Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 96.611 4.588 92.834 6.436 1.318 99 0.22
2 17.689 0.92 17.021 1.546 1.768 99 0.112
3 0.755 0.246 0.929 0.469 -1.345 99 0.212
4 0.066 0.07 0.95 0.374 -5.639 99 0.001

The Same

5 21.141 0.737 21.461 0.828 -1.056 99 0.319
1 90.822 17.499 93.123 18.328 -0.322 99 0.755
2 18.59 4.12 18.567 3.407 0.001 99 0.998
3 0.784 0.675 5.356 9.818 -1.535 99 0.16
4 29.276 18.191 23.922 15.852 0.653 99 0.53

Different

5 20.253 2.311 20.654 2.547 -0.458 99 0.66

Table 10.82 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

When all customers have the same priority, strategy 3 provides better results in terms of

customers’ dissatisfaction.

10.9.2.1 Conclusions

Table 10.83 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +
2 +
3 + +
4 +  + +

The Same

5 + +
1 + +
2 +
3 +  + +  +
4 + +

Different

5 +  + +  +

Table 10.83 - Best strategy for each of the objective functions

As can be seen in Table 10.83, when all customers have the same priority, objective

functions 1, travel time and 2, number of vehicles needed, are best obtained by using

strategy 1. Objective function 3, tour balance, is best obtained by using strategies 3 or 5.
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Objective functions 4, customers’ dissatisfaction, and 5, arrival time of the last vehicle,

are best obtained by using either strategy 2 or strategy 4.

When each customer has a different priority, objective function 1, travel time, is best

obtained by using strategy 3 or strategy 5. Objective function 2 is best obtained by using

strategy 1. Objective functions 3, tour balance, 4, customers’ dissatisfaction, and 5,

arrival time of the last vehicle, are best obtained by using either strategy 2 or strategy 4.

10.9.3. Strategies Comparison – SPEA2 algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.84.

Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 103.74 7.027 116.27 13.976 -3.304 99 0.009
2 13.737 1.196 19.558 1.165 -11.217 99 0.001
3 0.602 0.18 1.127 0.397 -3.318 99 0.007
4 13.247 11.73 4.878 0.697 2.309 99 0.046

The Same

5 19.879 0.357 19.185 2.011 1.22 99 0.252
1 92.435 6.563 113.575 23.527 -2.554 99 0.03
2 12.683 1.493 19.345 3.028 -6.162 99 0
3 0.849 0.128 0.928 0.342 -0.506 99 0.626
4 0.283 0.097 0.134 0.114 2.206 99 0.056

Different

5 19.465 0.169 19.391 2.098 0.13 99 0.897

Table 10.84 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As  demonstrated  by  the  results,  whether  or  not  all  customers  have  the  same  priority,

strategy 1 provides better solutions in terms of travel time and number of vehicles

needed. Furthermore, when all customers have the same priority, strategy 1 provides

better solutions in terms of tour balance. When each customer has a different priority,

strategy 2 provides better solutions in terms of customers’ dissatisfaction.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.85.
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Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 103.785 6.869 88.164 15.221 3.331 99 0.011
2 13.693 1.238 19.007 2.227 -6.711 99 0.001
3 0.647 0.106 0.645 0.229 0.239 99 0.816
4 13.416 11.74 41.159 14.539 -4.03 99 0.005

The Same

5 20.006 0.283 20.321 2.249 -0.628 99 0.544
1 92.281 6.469 92.004 18.398 0.04 99 0.968
2 12.56 1.501 20.007 1.506 -10.535 99 0.001
3 0.908 0.174 0.561 0.204 5.621 99 0.001
4 0.35 0.137 0.337 0.301 -0.034 99 0.975

Different

5 19.601 0.083 19.816 2.693 -0.453 99 0.66

Table 10.85 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As reflected in the results, whether or not all customers have the same priority, strategy

1 provides better solutions in terms of the number of vehicles needed. If all customers

have the same priority, strategy 1 also provides better solutions in terms of customers’

dissatisfaction, and strategy 3 provides better results in terms of travel time. If each

customer has a different priority, strategy 3 provides better solutions in terms of tour

balance.

The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.86.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 116.331 14.085 88.132 15.201 7.344 99 0.002
2 19.605 1.126 18.94 2.212 0.72 99 0.491
3 1.171 0.49 0.765 0.353 4.001 99 0.002
4 4.762 0.735 41.121 14.543 -7.761 99 0.001

The Same

5 19.262 1.875 20.333 2.28 -1.731 99 0.115
1 113.645 23.364 92.016 18.473 2.246 99 0.051
2 19.382 2.979 20.08 1.606 -0.53 99 0.608
3 0.952 0.187 0.559 0.092 4.671 99 0.001
4 0.126 0.088 0.361 0.338 -1.33 99 0.217

Different

5 19.369 2.105 19.867 2.735 -0.455 99 0.662

Table 10.86 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same or different priorities

As can be seen from the results, whether or not all customers have the same priority,

strategy 3 provides better solutions in terms of tour balance. If all customers have the
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same  priority,  strategy  2  also  provides  better  solutions  in  terms  of  customers’

dissatisfaction, and strategy 3 provides better solutions in terms of travel time.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.87.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 116.331 14.078 117.686 16.549 -0.198 99 0.848
2 19.51 1.128 19.82 1.263 -0.606 99 0.56
3 1.213 0.471 1.043 0.427 0.49 99 0.635
4 4.817 0.834 4.212 0.885 1.714 99 0.119

The Same

5 19.129 1.825 19.257 1.652 -0.062 99 0.949
1 113.49 23.469 117.783 16.433 -0.464 99 0.653
2 19.314 3.105 19.817 1.306 -0.437 99 0.671
3 0.959 0.379 1.215 0.436 -0.703 99 0.499
4 0.202 0.118 4.105 0.997 -13.5 99 0.002

Different

5 19.347 2.066 19.21 1.828 0.185 99 0.855

Table 10.87 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities

As  seen  from  the  results,  when  each  customer  has  a  different  priority,  strategy  2

provides better results in terms of customers’ dissatisfaction.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.88.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 87.989 15.243 82.654 27.675 0.57 99 0.584
2 19.008 2.084 18.293 4.092 0.668 99 0.523
3 0.706 0.38 0.454 0.041 2.146 99 0.06
4 41.134 14.722 35.596 23.297 0.574 99 0.581

The Same

5 20.448 2.237 19.375 3.96 0.733 99 0.48
1 92.176 18.467 98.894 4.221 -1.045 99 0.321
2 19.925 1.498 19.367 1.322 1.075 99 0.31
3 0.508 0.199 0.659 0.178 -2.753 99 0.022
4 0.249 0.362 0.152 0.095 0.738 99 0.482

Different

5 19.944 2.683 20.656 0.394 -0.858 99 0.413

Table 10.88 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As  seen  from  the  results,  when  each  customer  has  a  different  priority,  strategy  3

provides better results in terms of tour balance.
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10.9.3.1 Conclusions

Table 10.89 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 + +
2 +
3 + +
4 + +

The Same

5 + +  + +  +
1 +  + +   +
2 +
3 +
4 + + +   +

Different

5 + + +  +

Table 10.89 - Best strategy for each of the objective functions

As may be seen from Table 10.89, when all customers have the same priority, objective

functions  1,  travel  time  and  3,  route  balance,  are  best  obtained  by  using  strategy  3  or

strategy 5. Objective function 2, number of vehicles needed, is best obtained by using

strategy 1. Objective 4, customers’ dissatisfaction, and 5, arrival time of the last vehicle,

are best obtained by using either strategy 2 or strategy 4.

When each customer has a different priority, objective functions 1, travel time, 3, route

balance, 4, customers’ dissatisfaction, and 5, arrival time of the last vehicle, are best

obtained by using strategy 3. Objective function 2, number of vehicles needed, is best

obtained by using strategy 1.

10.9.4. Strategies Comparison – VE-ABC algorithm

In order to examine the effect of each of the strategies of the algorithm's results, several

paired t-tests were used.

The  first  set  of  paired  t-tests  was  used  to  compare  the  results  obtained  by  using

strategies 1 and 2. The results are summarized in Table 10.90.
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Strategy 1 Strategy 2Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 90.786 28.831 134.21 4.302 -4.668 99 0.002
2 11.784 3.588 21.736 1.066 -8.506 99 0.002
3 1.561 0.851 1.152 0.367 1.487 99 0.172
4 193.456 99.895 8.659 3.533 5.858 99 0.001

The Same

5 21.309 2.507 19.863 0.649 1.971 99 0.078
1 93.092 31.195 134.188 7.129 -4.176 99 0.003
2 10.929 4.15 21.959 1.082 -8.476 99 0.002
3 6.441 13.183 0.749 0.369 1.37 99 0.204
4 6.601 3.777 0.374 0.185 5.521 99 0

Different

5 21.479 1.066 19.8 0.648 5.031 99 0.002

Table 10.90 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 2, when all customers have the same or different priorities

As seen in the results, whether or not all customers have the same priority, strategy 1

provides better solutions in terms of travel time and number of vehicles needed.

Similarly, whether all customers have the same priority or not, strategy 2 provides better

solutions in terms of customers’ dissatisfaction. When each customer has a different

priority, strategy 2 provides better results in terms of arrival time of the last vehicle.

The second set of paired t-tests was used to compare the results obtained by using

strategies 1 and 3. The results are summarized in Table 10.91.

Strategy 1 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 90.69 28.898 105.09 10.594 -1.637 99 0.137
2 11.703 3.728 20.43 1.413 -7.832 99 0
3 1.519 0.853 2.2 5.521 -0.358 99 0.729
4 193.353 99.996 62.032 13.019 4.123 99 0.002

The Same

5 21.323 2.514 22.604 1.891 -1.529 99 0.163
1 92.993 31.113 97.512 5.943 -0.434 99 0.675
2 10.977 4.13 19.218 2.418 -4.942 99 0
3 6.396 13.217 0.735 0.24 1.356 99 0.209
4 6.521 3.736 0.56 0.334 5.193 99 0.003

Different

5 21.518 1.037 21.169 0.502 0.963 99 0.36

Table 10.91 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 1 and 3, when all customers have the same or different priorities

As reflected in the results, whether or not all customers have the same priority, strategy

1 provides better solutions in terms of the number of vehicles needed. Similarly, whether

all customers have the same priority or not, strategy 3 provides better solutions in terms

of customers’ dissatisfaction.
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The third set of paired t-tests was used to compare the results obtained by using

strategies 2 and 3. The results are summarized in Table 10.92.

Strategy 2 Strategy 3Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 134.2 4.209 105.135 10.68 7.455 99 0.001
2 21.899 0.952 20.414 1.481 2.328 99 0.045
3 1.036 0.428 2.204 5.514 -0.643 99 0.536
4 8.613 3.575 62.056 13.183 -13.19 99 0.002

The Same

5 19.746 0.623 22.493 1.885 -4.669 99 0.001
1 134.123 7.216 97.671 5.969 11.506 99 0
2 21.861 1.194 19.186 2.424 3.2 99 0.012
3 0.633 0.347 0.719 0.316 -0.734 99 0.481
4 0.365 0.201 0.556 0.34 -1.783 99 0.108

Different

5 19.783 0.489 21.186 0.529 -5.301 99 0

Table 10.92 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 3, when all customers have the same priority

As shown in the results, whether or not all customers have the same priority, strategy 2

provides better solutions in terms of the arrival time of the last vehicle. Similarly,

whether all customers have the same priority or not, strategy 3 provides better solutions

in terms of travel time and number of vehicles needed. When all customers have the same

priority, strategy 2 provides better results in terms of the number customers’

dissatisfaction.

The fourth set of paired t-tests was used to compare the results obtained by using

strategies 2 and 4. The results are summarized in Table 10.93.

Strategy 2 Strategy 4Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 134.278 4.138 136.443 5.309 -1.105 99 0.299
2 21.733 1.006 22.839 1.646 -1.677 99 0.127
3 1.135 0.447 0.858 0.325 1.635 99 0.137
4 8.655 3.638 10.959 9.246 -1.09 99 0.305

The Same

5 19.846 0.572 20.161 0.606 -1.202 99 0.261
1 134.191 7.182 137.535 7.467 -1.027 99 0.33
2 21.982 1.134 21.658 1.273 0.391 99 0.707
3 0.655 0.271 0.775 0.448 -2.11 99 0.065
4 0.22 0.255 0.202 0.09 0.63 99 0.545

Different

5 19.734 0.604 20.041 0.892 -1.098 99 0.299

Table 10.93 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 2 and 4, when all customers have the same or different priorities
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As reflected in the results, no significant differences were found between the two

strategies.

The fifth set of paired t-tests was used to compare the results obtained by using

strategies 3 and 5. The results are summarized in Table 10.94.

Strategy 3 Strategy 5Customer’s
Priority

Objective
Function M SD M SD t df Sig.

1 105.076 10.62 96.584 17.507 1.394 99 0.198
2 20.567 1.493 19.226 2.705 1.217 99 0.257
3 2.201 5.51 2.907 7.796 -0.244 99 0.815
4 62.051 13.2 46.852 23.676 2.279 99 0.048

The Same

5 22.505 1.92 20.881 2.332 2.14 99 0.063
1 97.505 5.881 100.742 13.307 -0.871 99 0.405
2 19.113 2.398 18.718 2.386 0.63 99 0.543
3 0.703 0.227 0.785 0.385 -0.337 99 0.743
4 0.406 0.28 0.463 0.435 -0.14 99 0.889

Different

5 21.109 0.395 20.831 0.755 0.693 99 0.506

Table 10.94 – Paired T-Test results for comparison of the results of the different objectives

functions when using strategies 3 and 5, when all customers have the same or different priorities

As may be seen from the results, when each customer has a different priority, strategy 5

provides better results in terms of customers’ dissatisfaction.

10.9.4.1 Conclusions

Table 10.95 describes which of the five strategies used provides the best value for each

of the objective functions, when all customers have the same priority and when each

customer has a different priority.

StrategyCustomer’s
Priority

Objective
Function 1 2 3 4 5

1 +   +   +
2 +
3 +  + +  +
4 + +

The Same

5 + +  + +
1 +   +   +
2 +
3 + +  + +  +
4 +  + +  +

Different

5 + +

Table 10.95 - Best strategy for each of the objective functions
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As seen in Table 10.95, whether all customers have the same priority or not, objective

functions 1, travel time, and 2, number of vehicles needed, are best obtained by using

strategy 1. Objective functions 3, tour balance, 4, customers’ dissatisfaction, and 5,

arrival time of the last vehicle, are best obtained by using either strategy 2 or strategy 4.

10.9.5. Algorithms Comparison

Since  in  the  real-world  information  on  travel  time  and  customers’  demands  are  not

known in advance, strategy 3 has to be used. Table 10.96 compares the results obtained

for each of the five objectives, using paired t-tests, functions by each one of the three

algorithms when applying the 3rd strategy. For each objective function, the best value

obtained is highlighted in red.

AlgorithmCustomer’s
Priority Objective Function Imp. VEGA SPEA2 VE-ABC

1 92.834 82.654 96.584
2 17.021 18.293 19.226
3 0.929 0.454 2.907
4 0.95 35.596 46.852

The Same

5 21.461 19.375 20.881
1 93.123 98.894 100.742
2 18.567 19.367 18.718
3 5.356 0.659 0.785
4 23.922 0.152 0.463

Different

5 20.654 20.656 20.831

Table 10.96 - Comparison of the 5th strategy used in all three algorithms

As may be seen, whether all customers have the same priority or not, objective 2,

number of vehicles needed is best obtained by using the improved VEGA algorithm.

Objective 3, tour balance is best obtained by using the SPEA2 algorithm. When all

customers have the same priority, objective 1, travel time, and objective 5, arrival time of

last vehicle, are best obtained by using the SPEA2 algorithm. When each customer has a

different priority, objective 1, travel time, and objective 5, arrival time of last vehicle, are

best obtained by using the improved VEGA algorithm.

10.9.6. Conclusions

Since in the real-world, information on travel time and customers’ demands are not

known in advance,  strategy 5 has to be used. From the results  obtained, one should use
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the SPEA2 algorithm, which returns the best solutions for all objective functions. When

looking at the different strategies, there is no dominant strategy which provides the best

solution in the majority of scenarios.

10.10. Summary
The goal of this chapter is  to compare the results  of the three algorithms using a case

study. The case study is based on two networks (urban and interurban) based on real-

world transportation network, including the locations of the depot and the customers and

information about travel time between the different customers. The case study is

performed using simulation.

In order to perform the case study, simulation was used. The simulation is based on two

processes running in parallel, the algorithm process and the simulation process, which

exchange information between each other.

The simulation process simulates an entire work today. It  does so by handling each of

the vehicles, collecting data about travel times and new customers’demands.

In the case study, 5 different strategies of using the evolutionary algorithms were tested,

where the fifth strategy represents a situation in which both travel times and customers’

demands are unknown (desired real-world situation).

The VEGA algorithm is a well known multi-objective algorithm, but since its

development more sophisticated and accurate multi-objective algorithms, such as the

SPAE2, towere introduced. Also, the VE-ABC algorithm is a new, slower algorithm, and

is therefore able to make far fewer iterations in a given time period, compared to the two

other algorithms. It was therefore expected that the best results would be obtained when

using the SPEA2 algorithm. However, the case study shows that this is not the case. In an

urban network when using a linear dissatisfaction function, it was found that the VEGA

algorithms performs best when all customers have the same priority. When each customer

has a different priority, using the same network and the same dissatisfaction function,

best results were obtained using either the SPEA2 or the VE-ABC algorithms.

In an urban network and a dissatisfaction function that represents customers who don’t

like that the supplier is either early or late, and in an interurban network with both types

of dissatisfaction network, the results of all algorithms were the same.
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This shows that the VEGA algorithm when used can provide solutions equal in quality

to the the solutions obtained from more sophisticated, more recent algorithms. This is

important,  since  the  VEGA  algorithm  has  an  advantage  in  the  simplicity  of  its

implementation, running speed compared to other algorithms (and as a result, more

iterations in a given time period), and its capacity for modifications.
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11. Summary

11.1. Summary and Conclusions

The Vehicle-Routing Problem (VRP) is a common name for problems involving the

construction of a set  of routes for a fleet  of vehicles.  The vehicles start  their  routes at  a

depot, call at customers to whom they deliver goods, and return to the depot. The

objective function for the vehicle-routing problem is to minimize delivery cost by finding

optimal routes, which are usually the shortest delivery routes.

The basic VRP consists of designing a set of delivery or collection routes, such that (1)

each route starts and ends at the depot, (2) each customer is called at exactly once and by

only one vehicle, (3) the total demand on each route does not exceed the capacity of a

single vehicle, and (4) the total routing distance is minimized. It is common to address the

basic VRP as the Capacitated Vehicle-Routing Problem (CVRP).

VRP has been solved optimally using Branch-and-Bound algorithms, Set-Covering and

Column Generation algorithms, Branch-and-Cut algorithms, Dynamic algorithms and

other exact algorithms.

Since VRP is an NP-Hard problem, many heuristics have been developed for solving it.

The classic algorithms include, among others, the Savings algorithms, Swap algorithm

and the Fisher and Jaikumar algorithm. Meta-heuristics algorithms, such as Simulated

Annealing, Tabu Search, Genetic Algorithms, Ant Systems Algorithms and Neural

Networks are also used in solving VRPs.

As research developed, extensions to the basic VRP were introduced. The goal was to

develop more realistic models, to adapt to the larger number of constraints of the real

world. Such extensions include the Split Delivery Vehicle Routing Problems, Vehicle

Routing Problems with Time Windows, Multi-Depot Vehicle Routing Problems, Time

Dependent Vehicle Routing Problems, Stochastic Vehicle Routing Problems, Mutli-

Objective Vehicle Routing problems and Real-Time Vehicle Routing Problems.

VRPs are often used to model real cases. However, they are often set up with the single

objective of minimizing the cost of the solution, despite the fact that the majority of the

problems encountered in industry, particularly in logistics, are multi-objective in nature.

In real-life, for instance, there may be several costs associated with a single tour.
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Moreover, the objectives may not always be limited to cost. In fact, numerous other

aspects, such as balancing workloads (time, distance ...), can be considered simply by

adding new objectives (Jozefowiez et al., 2008).

Traditionally, vehicle routing plans are based on deterministic information about

demands,  vehicle  locations  and  travel  times  on  the  roads.  What  is  likely  to  distinguish

most  distribution  problems  today  from  equivalent  problems  in  the  past,  is  that

information that is needed to come up with a set of good vehicle routes and schedules is

dynamically revealed to the decision maker (Psaraftis, 1995). Until recently, the cost of

obtaining real-time traffic information was deemed too high to compare with the benefits

from the real time control over the vehicles. Furthermore, some of the information needed

for  the  real  time  routing  was  impossible  to  get.  The  advancement  of  technology  in

communication systems, the geographic information system (GIS) and the intelligent

transportation  system  (ITS)  make  is  possible  to  operate  vehicles  using  the  real-time

information about the travel times and the vehicles' locations (Ghiani et al., 2003).

While traditional VRPs have been thoroughly studied, limited research has, to date,

been devoted to multi-objective real-time management of vehicles during the actual

execution of the distribution schedule to respond to unforeseen events that often occur

and may deteriorate the effectiveness of the predefined and static routing decisions.

Furthermore, in cases when traveling time is a crucial factor, ignoring travel time

fluctuations (due to various factors, such as peak hour traveling time, accidents, weather

conditions, etc.) can result in route plans that can take the vehicles into congested urban

traffic conditions. Considering time-dependent travel times as well as information

regarding demands that arise in real time in solving VRPs can reduce the costs of

ignoring the changing environment (Haghani & Jung, 2005).

The problem considered in this research is the Real-Time Multi-Objective VRP. The

Real-Time Multi-Objective VRP is defined as a vehicle fleet that has to serve customers

of fixed demands from a central depot. Customers must be assigned to vehicles, and the

vehicles routed so that the a number of objectives are minimized/maximized (Malandraki

&  Daskin,  1992).  The  travel  time  between  two  customers  or  a  customer  and  the  depot

depends on the distance between the points and the time of day, and it also has stochastic

properties.
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This research attempts to adjust the vehicles' routes at certain times in a planning period.

This adjustment considers new information about the travel times, current location of

vehicles, and new demand requests (that can be deleted after being served, or added since

they arise after the initial service began) and more. This result in a dynamic change in the

demand and traveling time information as time changes, which has to be taken into

consideration in order to provide optimized real-time operation of vehicles.

According to the vast literature review, the following objectives were addressed: (1)

Minimizing the total traveling time (e.g. (Malandraki & Daskin, 1992)) - Minimizing

the  total  traveling  time  can  reduce  the  cost  of  an  organization  for,  among  others,  the

following seasons: (a) the less time a driver spends driving the less chances there are for

being involved in a car accident (b) maintenance has to be performed less often. (2)

Minimizing the number of vehicles (e.g. (Corberan et al., 2002)) - Since in a real world,

the fixed cost of using additional vehicles is much more than the routing operations cost,

we can reduce the total cost by minimizing the number of vehicles in service. (3)

Maximizing customers' satisfaction (e.g. (Sessomboon et al., 1998)) - Customers who

are not satisfied with the level of service can switch to a different provider, which results

in a reduction of manufacturing and delivery. (4) Maximizing drivers' satisfaction (e.g.

(Lee & Ueng, 1998)) - In a similar manner, drivers who are not satisfied with their work

schedule may feel frustrated, which may damage their work, which in turn may influence

customers' satisfaction. (5) Minimizing the arrival time of the last vehicle – each

vehicle, on its return back to the depot, can be assigned to a new route (meaning more

routes with fewer vehicles). Minimizing the arrival time of the last vehicle arriving to the

depot, ensures that all other vehicles are present at the depot before the arrival of the last

vehicle, and can therefore be assigned to new routes.

The first stage in solving the real-time multi-objective vehicle routing problem was to

formulate the problem as a mixed integer linear programming problem on a network.

Several  assumptions  and  limitations  were  considered,  such  as  a  system  with  dynamic

conditions (real-time variation in travel times and real-time service requests); all demands

have specified service times and service time intervals; soft time windows for service

around the desired service times are considered, and more. Next the five objectives were

mathematically formulated, as well as the various constraints.



- 276 -

Since VRP is a NP-Hard problem, it cannot be solved to optimality using conventual

methods.  It  is  therefore essential  to develop an efficient heuristics algorithm for solving

the problem. In order to do so, various methods and algorithms for solving dynamic

vehicle routing problems as well as for solving multi-objective optimization problems

were studied.

Finally, three evolutionary algorithms for solving the real-time multi-objective vehicle

routing problem were described.

The first algorithm is an improved version of the vector evaluated genetic algorithm

(VEGA). It is based on the concept that for a problem with NumObj objectives, NumObj

sub-populations of size PopSize/NumObj each would be generated (assuming a total

population size of PopSize). Each sub-population uses only one of the NumObj objective

functions for fitness assignment. The proportionate selection operator is used to generate

the mating pool. These sub-populations are then shuffled together to obtain a new

population of size PopSize,  on  which  the  GA  would  apply  the  crossover  and  mutation

operators in the usual way. In each generation, the set of not-dominated solutions is

added to the optimal solutions set, from which non-dominated solutions are removed.

The  second  algorithm  is  an  implementation  of  the  SPEA2  algorithm.  The distinctive

feature of SPEA2 lies in the elitism-preserved operation. An external set (archive) is created

for storing primarily non-dominated solutions. It is then combined with the current

population  to  form  the  next  archive  that  is  then  used  to  create  offspring  for  the  next

generation. The size of the archive is fixed. It can be set to be equal to the population

size. Therefore, there exist two special situations when filling solutions in the archive. If

the number of non-dominated solutions is smaller than the archive size, other dominated

solutions taken from the remainder part of the population are filled in. This selection is

carried out according to a fitness value, specifically defined for SPEA. In other words, the

individual fitness value defined for a solution x, is the total of the SPEA-defined strengths

of solutions, which dominate x, plus a density value.

The second situation happens when the number of non-dominated solutions is over the

archive size. In this case, a truncation operator is applied. For that operator, the solution

which  has  the  smallest  distance  to  the  other  solutions  will  be  removed  from  the  set.  If

solutions have the same minimum distance, the second nearest distance will be

considered, and so forth. This is called the k-th nearest distance rule.
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The third evolutionary algorithm is a combination of the vector evaluated technique and

artifical bee colony algorithm. In the ABC algorithm, the colony of artificial bees consists

of three groups of bees: (1) employed bees - bees that are currently exploiting a food

source; (2) onlookers - bees that are waiting in the hive for the employed bees to share

information about the food sources; and (3) scouts - bees that are searching for new food

sources in the neighborhood of the hive. The ABC algorithm starts by assigning each

employed bee to a randomly generated solution. Next, in each iteration, each employed

bee, using a neighborhood operator, finds a new food source near its assigned food

source. The nectar amount of the new food source is then evaluated. If the amount of

nectar in the new food source is higher than the amount of nectar in the old one, then the

older source is replaced by the newer one. Next, the nectar information of the food

sources is shared with the onlookers. The onlooker chooses a food source according to

the probability proportional to the quality of that food source. Roulette wheel selection is

the  usual  method.  Therefore,  good  food  sources,  as  opposed  to  bad  ones,  attract  more

onlooker bees. Subsequently, using a neighborhood operator, each onlooker finds a food

source near its selected food source and calculates its nectar amount. Then, for each old

food source, the best food source among all the food sources near the old one is

determined. The employed bee associated with the old food source is assigned to the best

food source and abandons the old one if the best food source is better than the old food

source.  A food  source  is  also  abandoned  by  an  employed  bee  if  the  quality  of  the  food

source has not improved in the course of a predetermined and limited number of

successive iterations. The employed bees then become scouts and randomly search for

new food source. After a scout finds a new food source, it becomes an employed bee

again. After each employed bee is assigned to a food source, another iteration of the ABC

algorithm begins. The iterative process is repeated until a stopping condition is met.

Next, solutions representation was described. A candidate solution for an instance of the

VRP must specify the number of vehicles required, the partition of the demands through

all  these  vehicles;  the  delivery  order  for  each  route  as  well  as  waiting  time  at  each

customer. Let a node object define an object that has two properties, customer number

and waiting time at customer. A solution to the multi-objective real-time VRPs can be

encoded using an array of node objects, and based on the permutation representation. A

solution contains several routes, each one of them composed by an ordered subset of the
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customers. All demands belonging to the problem being solved must be present in one of

the routes.

Methods, such as crossover and mutations, which are needed for diversity purposes,

were also described. Crossover and mutation are the genetic operators used in the general

GAs. In ABCs only neighborhood operators, which are equivalent to GA's mutation

operators, are used. Solutions used in a specific problem have their own characteristics,

and some particular crossover operators are needed.

A fitness function is a particular type of objective function that is used to summarize, as

a single figure of merit, how close a given design solution is to achieving the set aims.

In the field of evolutionary algorithms, at each iteration, the idea is to delete the n worst

design solutions, and to breed n new  ones  from  the  best  design  solutions.  Each  design

solution, therefore, needs to be awarded a figure of merit, to indicate how close it came to

meeting the overall specification, and this is generated by applying the fitness function to

the test or simulation results obtained from that solution.

In some cases, fitness approximation may be appropriate, especially if (1) fitness

computation  time  of  a  single  solution  is  extremely  high,  (2)  precise  model  for  fitness

computation is missing or (3) the fitness function is uncertain or noisy.

In all three algorithms presented, the fitnesses of all five objective functions have to be

calculated. Due to the stochastic nature of travel time, in order to get an accurate value, or

accurate fitness functions, simulation has to be used. Simulation is a time-consuming

process.

It was shown that it is possible to increase the running time of the algorithm by using an

"approximated" fitness function, without influencing the accuracy of the algorithm. A fast

algorithm is necessary when coping with real-time problems, which is the final goal of

this study.

Usually, when solving a multi-objective optimization problem, the result is a set of non-

dominated solutions, from which the decision maker has to choose his preferred

alternative. Since the final goal is to create an automated algorithm for solving a real-time

multi-objective vehicle routing problem, the TOPSIS method, a mechanism for choosing

a preferred solution from a set of non-dominated solutions, has been implemented. It was

shown  that  there  is  no  difference  in  the  quality  of  the  results  obtained  using  the

"approximated" or "accurate" methods; however, this does not mean that the same results
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exist in both sets, and therefore, it is not guaranteed that the TOPSIS method selects

similar results from both sets. It was shown, by means of correlation testing and paired-

samples t-tests, that the solutions selected by the TOPSIS methods are similar regardless

of the method used for calculating the fitness functions.

Since travel time is more likely to be log-normally distributed, a second set of tests was

done, using Solomon’s instances. Using 500 generations and a population of 200

chromosomes, the result of the improved VEGA algorithm showed that for problems with

a large number of chromosomes (50 and 100 customers) using w=100  results  with  a

better solution than when using w=1, while for problems with a small number of

customers (25 and 50), no significant difference was found. Since it is known that the

number of generations used by a genetic algorithm may affect its results, and since in

real-time applications, the number of generations is bounded by the time given to the

algorithm  to  come  up  with  a  solution,  the  algorithm  was  tested  againThis  time  the

stopping condition was 30 minutes of running time, instead of the 500 generations. The

result showed that in all cases, the result obtained by the algorithm when w=1 are better

than the results obtained when w=100. Moreover, when w=1, the algorithm converges to

the best solution much faster than when w=100.

Another  parameter  of  the  algorithm  that  has  to  be  addressed  is  the  waiting  time

parameter. Waiting time is the time a vehicle waits after it has finished serving a

customer before it starts driving to the next customer. Service time is determined by the

algorithm, and can be any value in a pre-determined range. Therefore, the question asked

is, What is the best range from which the algorithm should select the waiting time so that

the algorithm will converge to the optimal solution in respect to all objective functions,

and do it as fast as possible (fewer iterations)?.

In  order  to  find  the  best  waiting  time range,  a  set  of  tests  was  done,  using  Solomon’s

C101, R101 and RC101 instances for 25, 50 and 100 customers, each solved 10 times.

Based on the results of the test instances, for each instance, in order to predict the value

of each objective function as a function of the waiting time range, linear regression was

used. The results of the linear regression showed that in more than half of the cases, the

best results were obtained when the waiting time range was between 0 and 5 minutes.

However, half of the functions found by the linear regression (23 out of 45), had a value

of R2 lower than 0.75. This means that the value of half of the objective functions
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calculated based upon the functions found by the regression, are probably not close to the

true value expected. Because of that, averages comparison was done and used as well.

The results of the averages comparison were similar to the results obtained by using the

functions found by the linear regression. More than half of the objectives (25 out of 45)

are best obtained when the waiting time is in the range of 0 to 5 minutes.

Based on the results obtained by using linear regression and the results obtained by

using  averages  comparison,  optimal  use  of  waiting  time  is  within  the  range  of  0  to  5

minutes.

In  a  traditional  VRPTW,  a  feasible  solution  must  satisfy  all  time  windows.  When  a

customer is served within a specified time window, the supplier’s service level is

satisfactory  or  equal  to  1;  otherwise,  it  is  unsatisfactory,  or  equal  to  0.  Time  windows

may sometimes be violated for economic and operational reasons. However, there are

certain limits to this violation (earliness or lateness) that a customer can tolerate.

Obviously, the earliness and lateness are closely related with the quality of service of the

supplier, and therefore, the service level cannot be described by only two states (0 or 1).

In order to get a feeling for how the service level, also known as customer satisfaction,

changes as a function of limits on such violations (earliness or lateness), 38 customers

(people), using questionnaires, were asked for their general satisfaction level when a

supplier or other service provider arrives 30 minutes to four hours, in 30 minutes

intervals, earlier than expected. Similarly, they were asked for their general satisfaction

level when a supplier or other service provider arrives later than expected.

Each customer, based upon the results of his questionnaire, was assigned a satisfaction

function. From these functions, it seems that most customers are sensitive to suppliers

arriving either early or late ( their satisfaction level drops dramatically when the supplier

arrives earlier/later than expected).

Finally, the results of the three algorithms were compared using a case study. The case

study is based on two networks (urban and interurban) based on a real-world

transportation network; this includes the locations of the depot and the customers and

information about travel time between the different customers. In order to perform the

case study, simulation was used. The simulation is based on two processes running in

parallel, the algorithm process and the simulation process, which exchange information

between each other.
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The simulation process simulates an entire work today. It  does so by handling each of

the vehicles, collecting data about travel times and new customers’demands.

In  the  case  study,  five  different  strategies  for  using  the  evolutionary  algorithms  were

tested, where the fifth strategy represents a situation in which both travel times and

customers’ demands are unknown (desired real-world situation).

The VEGA algorithm is a well-known, multi-objective algorithm. However, since its

development, more sophisticated and accurate multi-objective algorithms, such as the

SPAE2, algorithms were introduced. Furthermore, the VE-ABC algorithm is a new

algorithm, which is slower, and therefore, is able make far fewer iterations in a given

time period, compared to the two other algorithms. It was therefore expected that the best

results would be obtained when using the SPEA2 algorithm. However, the case study

shows that this is not true. In an urban network, when using a linear dissatisfaction

function, it was found that the VEGA algorithm performs best when all customers have

the same priority. When each customer has a different priority, using the same network

and the same dissatisfaction function, best results were obtained using either the SPEA2

or the VE-ABC algorithms.

In an urban network and a dissatisfaction function that represents customers who don’t

like when a supplier is either early or late, and in an interurban network with both types

of dissatisfaction network, the results of all algorithms were the same.

This shows that the VEGA algorithm when used can provide solutions equal in quality

to the solutions obtained from more sophisticated and more recent algorithms. This is

important, since the VEGA algorithm has an advantage in its simplicity of

implementation and running speed as compared with other algorithms (and as a result, the

number of iterations in a given time period), and the capacity for modifications.

11.2. Recommendations for Future Research

Although the proposed solution algorithm works well for the real-time multi-objective

vehicle routing problem, there are several fruitful avenues for future research- These are

described below.

The proposed EAs provide good results for the problems on the generated test network.

In this research, among other tests, the Solomon's test instances with 100 customers were

used. When the number of customers is increased, calculations of various aspects of the
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algorithms, such as finding the set of nondominated solutions, become more complex and

more time-consuming. This generates a large search space for the EAs and increases the

calculation time significantly.

The dynamic nature of the problem considered in this research required that the

algorithms described would converge toward the optimal solution as fast as possible,

since in many case the algorithm has less than 30 minutes to come up with a solution.

There are several ways that can be used and studied that can reduce calculation time.

1. Improving Seeding Methods

Usually the initial population is randomly generated. However, if an initial population

with high-quality solutions that are known a priori in  some  ways  can  be  used,  the

algorithms may provide better solutions more quickly than if the population is randomly

generated.

By adopting the construction heuristics that are traditionally used in routing problems,

the EAs may start in the regions of the solution space that may be good candidates for

locating the optimum. This approach has already been used throughout this research – the

initial population was constructed using the Savings algorithm. However, the Savings

algorithm is not intended for solving VRP with time windows, and it is certainly not

intended for solving multi-objective problems.

2. Using Parallel Algorithm

Some research is devoted to developing EAs that can be implemented in parallel

machines.  There  are  two  ways  to  implement  parallel  EAs.  The  first  approach  is  to

evaluate  the  fitness  value  of  each  solution  of  the  population  by  parallel  processors.  If

there is the same number of processors, N, as the number of solutions, the calculation

time for the fitness value can be reduced to 1/N time compared to the sequential

algorithm. The second way of using a parallel algorithm is to allocate a sub-population of

solutions to parallel processors which proceed independently for a certain number of

generations.
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It seems that using the second approach in implementation of parallel EAs is more

useful.  To  implement  a  parallel  EA,  a  way  to  redistribute  information  among  the

subpopulations has to be studied.

3. Comparisons to Other Real-World Data

In the case study, presented in chapter 10, two transportation networks were used. The

first is based on Israel's the greater Tel-Aviv metropolitan area urban network and the

second on Israel's interurban network. It is interesting to compare the result obtained with

the result of other networks from various places around the world. These networks can be

constructed using the same method presented in chapter 10, or using other methods for

collecting information on the network.

4. Other Fitness Functions

The algorithms proposed, and the problems described, can be used with other fitness

functions. These functions can represent the existing objectives or can be introduced as

part of new objectives. It would be interesting to know if by using other fitness functions,

the overall conclusions would be changed.

5. Modification of the Vector Evaluated Aproach

Both the improved VEGA algorithm and the VE-ABC algorithm are based on the

concept  that  for  a  problem  with NumObj objectives, NumObj subpopulations of size

PopSize/NumObj each would be generated (assuming a total population size of PopSize).

How would the two algorithms perform and what would be the results if the

subpopulations are not equal in size? This may enable prioritizing the different objectives

considered by the algorithm.
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