

Department of Operations Management

Topics in Supply Chain Management

Session 5

BAR-ILAN UNIVERSITY

Fouad El Ouardíghí

« Cette photocopie (d'articles ou de livre), fournie dans le cadre d'un accord avec le CFC, ne peut être ni reproduite, ni cédée. »

THE DESIGN OF A NETWORK IN A SUPPLY CHAIN

AGENDA

- THE ISSUE
- THE TRANSPORTATION PROBLEM
- WHERE TO LOCATE?
- GEOGRAPHICAL LOCATION AND PRODUCTION SCALE
- THE TRANS-SHIPMENT PROBLEM
- THE DESIGN OF A NETWORK IN A DYNAMIC SUPPLY CHAIN

ISSUE

HOW TO SUPPLY MANY MARKETS FROM MANY FACTORIES AT THE LEAST TOTAL TRANSPORTATION COST?

THE TRANSPORTATION PROBLEM

Consider n factories supplying m markets, with n = 3 and m = 4, X_{ij} being the quantity supplied from factory i to market j (i = 1, 2, 3 and j = 1, 2, 3, 4), and C_{ij} the transportation cost per unit from factory i to market j (\$) such that:

$$C_{11} = 25 ; C_{12} = 30 ; C_{13} = 20 ; C_{14} = 40 ;$$

$$C_{21} = 30 ; C_{22} = 25 ; C_{23} = 20 ; C_{24} = 30 ;$$

$$C_{31} = 40 ; C_{32} = 20 ; C_{33} = 40 ; C_{34} = 35.$$

In matrix form, we get:

	/				
Markets Factories	M ₁ /	M ₂	M ₃	M ₄	Supply
F ₁	25 ^v	30	20	40	37
F ₂	30	25	20	30	22
F ₃	40	20	40	35	32
Demand	25	20	25	21	91

Transportation cost per unit from F₁ to M₁

Equilibrium constraint : Supply = Demand

LINEAR PROGRAMMING FORMULATION

Min Z =
$$\sum_{i=1}^{3} \sum_{j=1}^{4} C_{ij} X_{ij}$$

such that:

$$\sum_{j=1}^{4} X_{1j} = 37$$

$$\sum_{j=1}^{4} X_{2j} = 22$$

$$\sum_{j=1}^{4} X_{3j} = 32$$

$$\sum_{i=1}^{3} X_{i1} = 25$$

$$\sum_{i=1}^{3} X_{i2} = 20$$

$$\sum_{i=1}^{3} X_{i3} = 25$$

$$\sum_{i=1}^{3} X_{i4} = 21$$

$$\forall i = 1, 2, 3, \forall j = 1, 2, 3, 4.$$

Resolution Method

STEPPING-STONE ALGORITHM

First step: Find the initial solution

To determine a feasible initial solution, we use the heuristics of the minimum cost (i.e., saturate the constraints using the criterion of the minimum unit cost).

Markets Factories	M ₁	M ₂	M ₃	M ₄	Supply
F ₁	25 12	30	20 25	40	37
F ₂	30	25 20	20	30	22
F ₃	40 1 ′	20	40	35 21	32
Demand	25	20	25	21	91

that is:

 $\begin{aligned} X_{11} &= 12 \; ; \; X_{12} &= \; 0 \; ; \; X_{13} &= 25 \; ; \; X_{14} &= \; 0 \; ; \\ X_{21} &= \; 2 \; ; \; X_{22} &= 20 \; ; \; X_{23} &= \; 0 \; ; \; X_{24} &= \; 0 \; ; \\ X_{31} &= \; 11 \; ; \; X_{32} &= \; 0 \; ; \; X_{33} &= \; 0 \; ; \; X_{34} &= \; 21. \end{aligned}$

Remark: the feasible initial solution must be such that the number of crossings effectively used (i.e., strictly positive X_{ii}) is equal to:

or such that the number of unused crossings (i.e., zero X_{ij}) is equal to :

nm - (n + m - 1) = (m - 1)(n - 1) = (4 - 1)(3 - 1) = 6.

Initial total transportation cost

Z_{initial} = 25 x 12 + 20 x 25 + 30 x 2 + 25 x 20 + 40 x 11 + 35 x 21 = **\$ 2 535**

Second step: Compute the opportunity cost related to each unused crossing

Process:

- A. Put one unit of item on an unused crossing
- \rightarrow (for example the crossing 3,2);

B. Make the required adjustments to fulfill the constraints

 \rightarrow (withdraw one unit to the quantities on the crossings 2,2 and 3,1, and add one unit to the quantities on the crossing 2,1);

C. Compute the reduced cost associated to this operation

 \rightarrow (by weighing each addition and each withdrawal by the corresponding cost).

Computation of the reduced costs

Markets Factories	M ₁	M ₂	M ₃	M ₄	Supply		
F ₁	²⁵ 12	30	20 25	40	37		
F ₂	³⁰ +1 2	²⁵	20	30	22		
F ₃	40 -1 11	<u>20</u> +1	40	³⁵ 21	32		
Demand	25	20	25	21	91		
transportation circuit Unused crossing associated to Δ_{32}							

On the whole, we should compute 6 reduced costs (one for each unused crossing), that is:

$$\Delta_{12} = + 1 \times 30 - 1 \times 25 + 1 \times 30 - 1 \times 25 = 10 > 0,$$

 Δ_{14} = 40 – 35 + 40 – 25 = 20 > 0 (potential cost related to the use of the unused crossing 1,4),

$$\Delta_{23} = 20 - 20 + 25 - 30 = -5 < 0$$
 (potential benefit related to the use of the unused crossing 2,3),
 $\Delta_{24} = 30 - 35 + 40 - 30 = 5 > 0$

$$\Delta_{24} = 30 - 35 + 40 - 30 = 5 > 0,$$

$$\Delta_{32} = 20 - 25 + 30 - 40 = -15 < 0,$$

$$\Delta_{33} = 40 - 20 + 25 - 40 = 5 > 0.$$

Third step: Improve the initial solution

1 – Determine the maximum potential bénéfit:

$$\text{Min} \{\Delta_{23}, \Delta_{32}\} = \Delta_{32} \\ \Delta_{32} = C_{32} - C_{22} + C_{21} - C_{31} = -15.$$

2 – Modify the transportation circuit associated to Δ_{32} :

$$X_{21} + Min (X_{22}, X_{31}) = 2 + 11 = 13,$$

$$X_{22} - Min (X_{22}, X_{31}) = 20 - 11 = 9,$$

$$X_{32} + Min (X_{22}, X_{31}) = 0 + 11 = 11,$$

$$X_{31} - Min (X_{22}, X_{31}) = 11 - 11 = 0.$$

Improved transportation network

-

. .

. .

13 =	= 2 + 11	5 = 20 =			
Markets Factories	`\ _M 1	M ₂	M ₃	M ₄	Supply
F ₁	25 \ _ 12	30	²⁰ 25	40	37
F ₂	³⁰ 13	25 • 9	20	30	22
F_3	40	20 11	40	³⁵ 21	32
Demand	25	20 /	25	21	91
		, , ,			

9 = 20 - 11

0 = 11 - 11 11 = 0 + 11

Total transportation cost after the first iteration :

\$ 2 370

(that is, 6,5% less than the initial solution)

Fourth step: Iterate the second and third step

Optimality criterion: all the reduced cost are non-negative (i.e., there exists no potential benefit corresponding to a modification of the transportation network)

Markets Factories	M ₁	M ₂	M ₃	M ₄	Supply
F ₁	25 25	30	²⁰ 12	40	37
F ₂	30	25	²⁰ 13	30 9	22
F ₃	40	20 20	40	³⁵ 12	32
Demand	25	20	25	21	91

OPTIMAL TRANSPORTATION NETWORK

Optimal total transportation cost:

\$ 2 215

(that is, 12,6% less than the initial solution)

Degenerate solution

First example: consider the following initial matrix

Markets Factories	M ₁	M ₂	M ₃	Supply
F ₁	³ 35	6 25	7	60
F ₂	8	5 30	7	30
F ₃	4	9	11 30	30
Demand	35	55	30	120

Number of crossings effectively used:

$$4 < n + m - 1 = 6 - 1 = 5$$
,

 \rightarrow the initial feasible solution is *degenerate*.

Initial total transportation cost: \$735

Resolution process (1/2)

- 1 Create an *artificial* effectively used crossing:
 - **e.g.,** crossing (2,3)

- 5 () - /				į
Markets Factories	M ₁	M ₂	M ₃	Supply
F ₁	³ 35	6 25	7	60
F ₂	8	5 30	7 V	30
F ₃	4	9	11 30	30
Demand	35	55	30	120

Artificial Cell

2 – Compute the remaining reduced costs

Markets Factories		M ₁		M ₂		M ₃	Supply
F ₁	3_	35	6	⁺ 25	7		60
F ₂	8	6	5	- 30	7	+ 0	30
F ₃	4 +	-2	9	0	11	- 30	30
Demand		35		55		30	120

Resolution process (2/2)

Minimum reduced cost: $\Delta_{31} = C_{31} - C_{11} + C_{12} - C_{22} + C_{23} - C_{33} = -2$

Corresponding improvement:

$$X_{11} + Min (X_{11}, X_{22}, X_{33}) = 35 - 30 = 5,$$

$$X_{12} + Min (X_{11}, X_{22}, X_{33}) = 25 + 30 = 55,$$

$$X_{22} - Min (X_{11}, X_{22}, X_{33}) = 30 - 30 = 0,$$

$$X_{23} - Min (X_{11}, X_{22}, X_{33}) = 0 + 30 = 30,$$

$$X_{33} - Min (X_{11}, X_{22}, X_{33}) = 30 - 30 = 0,$$

$$X_{31} - Min (X_{11}, X_{22}, X_{33}) = 0 + 30 = 30,$$

 \rightarrow the solution obtained after the first iteration is also degenerate.

 \rightarrow Iteration of 1. and 2.

Marchés Usines	M ₁	M ₂	M ₃	Q ^{tés} Disponibles
F ₁	з 5	6 25	7 30	60
F ₂	8	5 30	7	30
F ₃	4 30	9	11	30
Q ^{tés} Requises	35	55	30	120

Optimal solution

 \rightarrow the optimal solution is not degenerate.

Optimal total cost: **\$ 645** (that is, 12,25% less than the initial solution)

Degenerate solution

Second example: consider the following initial matrix

Markets Factories	M ₁	M ₂	M ₃	Supply
F ₁	4 100	10	6	100
F ₂	⁸ 100	16	6 200	300
F ₃	14	¹⁸ 300	10	300
Demand	200	300	200	700

Number of crossings effectively used:

$$4 < n + m - 1 = 6 - 1 = 5$$
,

 \rightarrow the initial feasible solution is *degenerate*.

Initial total transportation cost: \$ 7 800

1 – Create an *artificial* effectively used crossing:

e.g., crossing (3,1)

Markets Factories	M ₁	M ₂	M ₃	Supply
F ₁	4 100	10	6	100
F ₂	⁸ 100	16	⁶ 200	300
F ₃	14 O	¹⁸ 300	10	300
Demand	200	300	200	700

2 – Compute the remaining reduced costs:

Artificial cell

Markets Factories	M ₁	M ₂	M ₃	Supply
F ₁	4 100	10 2	6 (4)	100
F ₂	⁸ ⁺ 100	16 ④	⁶ 200	300
F ₃	¹⁴ 0	_ ₁₈ 300	<u>10</u> - 2	300
Demand	200	300	200	700

Minimum reduced cost: $\Delta_{33} = 0$

$$_{33} = C_{33} - C_{31} + C_{21} - C_{23} = -2$$

Corresponding improvement:

$$\begin{aligned} X_{33} + \text{Min} & (X_{23}, X_{31}) = 0 + 0 = 0, \\ X_{31} - \text{Min} & (X_{23}, X_{31}) = 0 - 0 = 0, \\ X_{21} + \text{Min} & (X_{23}, X_{31}) = 100 + 0 = 100, \\ X_{23} - \text{Min} & (X_{23}, X_{31}) = 200 - 0 = 200, \end{aligned}$$

 \rightarrow the degenerate initial solution is optimal.

Optimal total cost: **\$ 7 800**

WHERE TO LOCATE?

The market demand of the Williams Company has recently increased significantly. In order to supply its warehouses in Los Angeles and New York, the Williams Company must decide where to locate its new factory. Two options are considered: either New Orleans or Houston. The unit production and distribution costs, the production capacities and sales are reported in the following table.

	Wareh	ouses	Production Capacity	Production Unit Cost
	Los Angeles	New York		
Existing factories:				
Atlanta	\$8	\$ 5	600	\$ 6
Tulsa	\$4	\$ 7	900	\$ 5
Potential locations:				
New Orleans	\$ 5	\$6	500	\$ 4*
Houston	\$ 4	\$ 6	500	\$ 3*
Sales (forecast)	800	1 200	2 000	

*: Estimates.

Which location should be preferred for the new factory?

Example (continued)

Optimal transportation network associated with a location in New Orleans

Destination Source	Los Angeles	New York	Supply
Atlanta	\$ 14	\$ 11 600	600
Tulsa	\$ 9 800	\$ 12 100	900
New Orleans	\$9	\$ 10 500	500
Demand	800	1 200	2 000

Total distribution cost: \$ 20 000

Optimal location

Optimal transportation network associated with a location in Houston

Destination Source	Los Angeles	New York	Supply
Atlanta	\$14	\$11 600	600
Tulsa	\$9 800	\$12 100	900
Houston	\$7	\$9 500	500
Demand	800	1 200	2 000

Total distribution cost: \$ 19 500

Min [20000; 19500] = 19500 \Rightarrow the optimal location is Houston.

GEOGRAPHICAL LOCATION AND PRODUCTION SCALE

SunOil, a world company of the petrochimical sector must determine its international location strategy.

One possibility would be to implement one factory close to each market. The benefit would lie in lower transportation cost, and importation taxes. The problem would be that the size of each factory would only depend on the local demand, which might not allow for an efficient exploitation of the economies of scale.

Another possibility would lead to implement larger factories in a limited number of areas. This would allow for an efficient exploitation of the economies of scale but would also increase the transportation cost, and importation taxes, if any.

SunOil would like to optimize its trade-off on these quantitative decision criteria, along with that related to non-quantitative criteria, such as the competitive environment and the political risk.

Data

	Markets Variable costs in k\$ (production, inventory, transportation and taxes/million of units)						Lower production	Fixed	Higher
Factories	North America	South America	Europe	Asia	Africa	costs (\$)	production scale	costs (\$)	production scale
North America	81	92	101	130	115	6 000	10	9 000	20
South America	117	77	108	98	100	4 500	10	6 750	20
Europe	102	105	95	119	111	6 500	10	9 750	20
Asia	115	125	90	59	74	4 100	10	6 150	20
Africa	142	100	103	105	71	4 000	10	6 000	20
Demand	12	8	14	16	7				

Linear programming problem

We define the following notations:

- *n* = number of potential locations
- *m* = number of markets
- D_i = demand/year of market j
- K_i = potential production capacity of factory *i*
- f_i = fixed cost/year related to the implementation of factory *i*
- c_{ij} = variable cost of supplying one product unit from factory *i* to market *j*

We seek to design a network that minimizes the total cost of fulfillment of the total demand.

Define the following decision variables:

 y_i = 1 if factory *i* is implemented, 0 in the converse case

 x_{ij} = quantity supplied from factory *i* to market *j*

The problem is formulated as a mixed-integer programming problem, that is:

$$Min \sum_{i=1}^{n} f_{i} y_{i} + \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ji} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = D_{i}, j = 1, ..., m \qquad (eq.1)$$

$$\sum_{i=1}^{m} x_{ij} \le K_{i} y_{i}, i = 1, ..., n \qquad (eq.2)$$

$$y_{i} \in [0,1], i = 1, ..., n$$

such that:

Excel spreadsheet

	Α	В	С	D	E	F		G	н	I		J
	Data	Variable co	Markets sts in k\$ (production, in taxes/million o	ventory, tran f units)	sportatio	n and	Fixed c	osts (\$)	Lower production	Fixed cos	sts (\$)	Higher production
	Factories	North America	South America	Europe	Asia	Africa			scale			scale
4	North America	81	92	101	130	115	6 (000	10	9 00	0	20
5	South America	117	77	108	98	100	4 :	500	10	6 75	0	20
6	Europe	102	105	95	119	111	6 5	500	10	9 75	0	20
7	Asia	115	125	90	59	74	4	100	10	6 15	0	20
8	Africa	142	100	103	105	71	4 (000	10	6 00	0	20
9	Demand	12	8	14	16	7	4 (000	10	6 00	0	20
	Decision variables		Markots (k u	nite)								
	Decision variables	North America	South America	Europe	Asia	Africa	(1 = open) (1 = open)					
14	North America	0	0	0	0	0		0 0				
15	South America	0	0	0	0	0		0 0				
16	Europe	0	0	0	0	0	0 0					
17	Asia	0	0	0	0	0		0	0			
18	Africa	0	0	0	0	0		0	0			
	Constrainte						Cell	Formula			Equatio	n Copied
		0			<u>r</u>		B28	=B9-SUN	/(B14:B18)		eq.1	B28:F28
22	Area of production	Overcapacity					B22	=G14*H4	+H14*J4-SUM(B	14:F14)	eg. 2	B22:B26
22	North America	0									0q. <u>-</u>	
23	South America	0					B31		ODUCT(B14:F18 DUCT(G14:G18	3,B4:F8)+ ,G4:G8)+	Objectiv	/e -
24	Asia	0						SUMPRO	DUCT(H14:H18,	14:18)		
25	Asia	0					Solve	er:	1. Target cel	: \$B\$31	-	
20	Anda	North America	South America	Furope	Asia	Africa			2. Equal to :	Min	<i><u></u><u></u><u></u><u></u></i>	
28	Unsupplied demand	12	8	14	16	7	3. By changing : $\$B\$14:\$H\18 4. Constraints \Rightarrow Add 5. $\$B\$14:\$H\$18 \ge 0 \Rightarrow$ Add 6. $\$B\$22:\$B\$26 \ge 0 \Rightarrow$ Add 7. $\$B\$28:\$F\$28=0 \Rightarrow$ Add 8. $\$G\$14:\$H\$18=$ binary \Rightarrow OK					
	Objective function											
31	Total cost	\$ -]		9. Solve	, .		28

Optimal location and production scale

	А	В	С	D	E	F	G	н	
	Decision variables		Markets (in k	units)			Factories	Factories	
		North America	South America	Europe	Asia	Africa	(1 = open)	(1 = open)	
14	North America	0	0	0	0	0	0	0	
15	South America	12	8	0	0	0	0	1	
16	Europe	0	0	0	0	0	0	0	
17	Asia	0	0	4	16	0	0	1	
18	Africa	0	0	10	0	7	0	1	
	Constraints								
	Area of production	Overcapacity							
22	North America	0							
23	South America	0							
24	Europe	0							
25	Asia	0							
26	Africa	3							
		North America	South America	Europe	Asia	Africa			
28	Unsupplied demand	0	0	0	0	0			
	Objective Function								
31	Total Cost	\$ 23 751							

THE TRANS-SHIPMENT PROBLEM

- → Here, we take into account intermediate locations between factories and markets, that is, warehouses.
- \rightarrow Potential use of multiples crossings, that is:
 - From one factory to another,
 - From one market to another,
 - From a factory to a market via a warehouse (cross-docking),
 - From one warehouse to another,
 - From a factory directly to a market.

Example

Consider 2 factories, 2 warehouses et 3 markets. The factories are supposed to have similar unit production costs. Also, the warehouses are supposed to have similar unit inventory holding costs.

Heuristic resolution procedure

The objective here is to determine a trans-shipment strategy specifying the flow of products going from the factories to the markets via the warehouses.

To determine an efficient trans-shipment strategy, it is possible to use one of the two following heuristic procedures.

Heuristic procedure 1.

For each market, choose the cheapest warehouse-market path. In this respect, M_1 , M_2 and M_3 must be supplied by W_2 . Therefore, for this trans-shipment point, it is then sufficient to choose the cheapest factory, which gives 60 000 units from factory F_2 and 140 000 units from factory F_1 . The total cost corresponding to this procedure is:

2 x 50 000 + 1 x 100 000 + 2 x 50 000 + 2 x 60 000 + 5 x 140 000 = \$ 1 120 000.

Heuristic procedure 2.

For each market, choose the path crossing the cheapest trans-shipment point. For market M_1 , compare the cost of the paths $F_1 \rightarrow W_1 \rightarrow M_1$, $F_1 \rightarrow W_2 \rightarrow M_1$, $F_2 \rightarrow W_1 \rightarrow M_1$ et $F_2 \rightarrow W_2 \rightarrow M_1$. The cheapest is $F_1 \rightarrow W_1 \rightarrow M_1$, which leads to choose W_1 for M_1 . A similar reasoning leads to choose W_2 for M_2 and W_2 for M_3 . The best trans-shipment organization leads then to supply 50 000 units from factory F_1 to warehouse W_1 , 60 000 units from factory F_2 to warehouse W_2 and 90 000 units from factory F_1 to warehouse W_2 . The total cost corresponding to this procedure is \$ 920 000.

However, neither of these two procedures is optimal. The use of linear programming is then necessary.

LINEAR PROGRAMMING FORMULATION

$$\begin{split} \text{Min } Z &= 0 X_{\text{F1W1}} + 5 X_{\text{F1W2}} + 4 X_{\text{F2W1}} + 2 X_{\text{F2W2}} \\ &+ 3 X_{\text{W1M1}} + 4 X_{\text{W1M2}} + 5 X_{\text{W1M3}} \\ &+ 2 X_{\text{W2M1}} + 1 X_{\text{W2M2}} + 2 X_{\text{W2M3}} \end{split}$$

such that:

$$\begin{split} X_{F1W1} + X_{F1W2} &<= 140\ 000, \\ X_{F2W1} + X_{F2W2} &<= 60\ 000, \\ X_{F1W1} + X_{F2W1} &= X_{W1M1} + X_{W1M2} + X_{W1M3} \\ X_{F1W2} + X_{F2W2} &= X_{W2M1} + X_{W2M2} + X_{W2M3} \\ X_{W1M1} + X_{W2M1} &= 50\ 000, \\ X_{W1M2} + X_{W2M2} &= 100\ 000, \\ X_{W1M3} + X_{W2M3} &= 50\ 000. \end{split}$$

$$X_{ij} \ge 0,$$

 $i = F_1, F_2, W_1, W_2,$
 $j = W_1, W_2, M_1, M_2, M_3, i \ne j.$

Optimal trans-shipment network

(that is, 20 % less than the second heuristics)

Remark: the storage capacity of the warehouses is determined *ex post*.

THE DESIGN OF A NETWORK IN A DYNAMIC SUPPLY CHAIN

Integration in a *dynamic setting* of the following activities:

- Production,
- Inventory,
- Transportation,
- Distribution.

Example

Consider 3 factories and 4 markets over 2 time periods (t_1 and t_2).

Demand (units) Production capacity (units/period) t₁ t₂ M₁:700 M₁: 1 000 _ **F**₁ : 850 M₂: 100 M₂: 250 M₃: 300 M₃: 200 **F**₂ : 400 **F**₃ : 250 M₄: 300 M₄: 150 Total 1 500 1 400 1 600

Production capacity and demand

Transportation costs (\$/unit)

Warehouses Factories	M ₁	M ₂	M ₃	M_4
F ₁	64	50	77	14
F ₂	37	20	48	24
F ₃	25	14	15	48

Production costs and sales price

Production costs (\$/unit)	Sales Price (\$/unit)
-	M ₁ : 1 200
F ₁ : 1 000	M ₂ : 1 150
F ₂ : 1 100	M ₃ : 1 000
F ₃ : 950	M ₄ : 1 100

Inventory holding cost/unit : \$ 5

Late delivery penalty/unit : \$ 1 000

Unit profits Matrix

1200 - 1000 - 64 = 136

		M ₁		N	M ₂		M ₃		M ₄	
	```````````````````````````````````````	t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	Suppry
F	t ₁	[`] <b>1</b> 36	131	100	95	- 77	- 82	86	81	850
<b>F</b> 1 -	t ₂	- 864	136	- 900	100	-1077	- 77	- 914	86	850
-	t ₁	63	58	30	<mark>₄</mark> 25	- 148	- 153	- 24	-29	400
F ₂	t ₂	- 937	63	-970	, ' <b>30</b>	- 1148	-148	- 1024	-24	400
	t ₁	225	220	186	, [′] 181	35	30	102	97	250
г ₃ –	t ₂	- 775	225	- 814	186	- 965	35	- 898	102	250
Demand 700 1 000 100					250	300	200	300	<b>150</b>	3 000

We seek to maximize the total profit rather than to minimize the total cost

→ We then compute the reduced profits instead of the reduced costs

Optimal supply chain network

		<b>M</b> ₁		M ₂		M ₃		M4		- Supply
		t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	Suppry
E	t ₁	550						300		850
<b>Г</b> 1	t ₂		700						150	850
-	t ₁	150	100	100		50				400
Г ₂	t ₂		150		250					400
E	t ₁					250				250
F ₃	t ₂		50				200			250
Dem	nand	700	1 000	100	250	300	200	300	150	3 000

Total profit: **\$ 263 500**  Optimal production, inventory and distribution

	Sold pro	oduction	Inventory		
	t ₁	t ₂	between $t_1$ and $t_2$		
F ₁	850	850	0		
F ₂	300	400	100		
F ₃	250	250	0		
Total	1 400	1 500	100		

→ Maximum utilization of the production capacity,

→ Maximum coverage of the market.

### Remark

Given the existence of negative unit profits, it might be more profitable:

- Not to use the whole production capacity,
- And/or not to supply all the markets.

To check these assumptions, we introduce a fictitious factory and a fictitious market that will respectively serve to:

- Produce (at no cost) for the unprofitable markets, and
- To absorb (at no cost) the production of inefficient factories.

## Unit profits matrix

Fictitious market

										, ', ', ', ', ', ', ', ', ', ', ', ', ',	
		N	N ₁	N	l ₂	N	l ₃	N	<b>M</b> ₄		Supply
		t ₁	t ₂	IVI _F	Supply						
г	t ₁	136	131	100	95	- 77	- 82	86	81	0	850
<b>г</b> 1	t ₂	- 864	136	- 900	100	-1077	- 77	- 914	86	0	850
F ₂	t ₁	63	58	30	25	- 148	- 153	- 24	-29	0	400
	t ₂	- 937	63	-970	30	- 1148	-148	- 1024	-24	0	400
F	t ₁	225	220	186	181	35	30	102	97	0	250
г ₃	t ₂	- 775	225	- 814	186	- 965	35	- 898	102	0	250
F	F V	0	0	0	0	0	0	0	0	0	<b>3000</b>
Den	nand``\	700	1 000	100	250	300	200	300	150	3000	, [/] 6000
		```							/		

Fictitious factory

Absorption capacity sufficiently large to absorb all the production

> Production capacity sufficiently large to supply all the markets

Optimal supply chain network

		M ₁		M ₂		M ₃		M ₄		М	Supply
		t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	WF	Suppry
E	t ₁	450		100				300			850
 1	t ₂		700						150		850
F ₂	t ₁									400	400
	t ₂		50		250					100	400
F	t ₁	250									250
г ₃	t ₂		250								250
F _F						300	200			2500	3000
Demand		700	1000	100	250	300	200	300	150	3000	3000

Total profit: 328 250 \$ (= 1,25 x 263 500 \$)

Optimal Production, inventory and distribution

Optimal policy for production and inventory

	Utilization production t ₁	n rate of the on capacity t ₂	Inventory between t ₁ and t ₂
F ₁	100%	100%	0
F ₂	0%	75%	0
F_3	100%	100%	0
Total	≅ 74%	94 %	0

 \rightarrow Reduce or reallocate part of the production capacity of F_2

Optimal distribution network

	Market coverage rate					
	t ₁	t ₂				
M ₁	100%	100%				
M ₂	100%	100%				
M ₃	0%	0%				
M_4	100%	100%				
Total	≅ 79%	87,5%				