
Holon Academic Institute of Technology
Department of Computer Science

A Final Project in:

AA BB..SScc..TT..EE DDeeggrreeee iinn
CCoommppuutteerr SScciieennccee

MMiinniinngg AAssssoocciiaattiioonn aanndd IInnvveerrssee
AAssssoocciiaattiioonn RRuulleess iinn LLaarrggee DDaattaabbaasseess

Supervisor: Prof. M. Schneider

Written by:
Oren Nahum (0-2725262-6)

Tali Ambar Orad (0-3841350-6)

June 2001

- 2 -

המחלקה למדעי המחשב

חיפוש קשרים וקשרים הפוכים במסדי נתונים

מאת

אורן נחום (0-2725262-6)
טלי אמבר אורעד (0-3841350-6)

- 3 -

By
Oren Nahum and Tali Ambar Orad

Dep. of Computer Science
Holon Academic Institute of Technology

Israel

Table of content

Table of content... 3
Abstract ... 5
1. Knowledge Discovery in Databases and Data Mining.. 5

1.1. Introduction.. 5
1.2. Links Between KDD and Related Fields ... 6
1.3. A Definition of Knowledge Discovery in Databases... 6
1.4. The KDD Process .. 8
1.5. An Overview of Data Mining Methods ... 9

1.1.1. The Primary Tasks of Data Mining .. 10
1.1.2. The Components of Data Mining Algorithms.. 11

1.6. A Discussion of Popular Data Mining Methods .. 12
1.6.1. Decision Trees and Rules ... 12
1.6.2. Nonlinear Regression and Classification Methods..................................... 13
1.6.3. Example-based Methods... 13
1.6.4. Probabilistic Graphical Dependency Models ... 14
1.6.5. Relational Learning Models ... 14

1.7. Application Issues.. 15
1.7.1. Guidelines for Selecting a Potential KDD Application.............................. 16
1.7.2. Privacy and Knowledge Discovery .. 17
1.7.3. Research and Application Challenges for KDD... 18

2. Association Rules.. 20
2.1. Introduction to Association Rules.. 20
2.2. Formal Model... 20
2.3. Related work .. 21
2.4. Discovering Large Itemsets ... 22

2.4.1. AIS Algorithm .. 22
2.4.2. Apriori Algorithm... 24

2.5. Algorithm for Mining Association Rules .. 25
2.6. Example 1 .. 26

3. Inverse Associations.. 31
3.1. Formal Model... 31
3.2. Algorithm for Mining Inverse Association Rules.. 32
3.3. Example 2 .. 32

4. Implementation of the Algorithms ... 43
4.1. Data Insertion... 43
4.2. Resizing the Data Table ... 44

- 4 -

4.3. Algorithms ... 45
4.4. The Mining Procedure ... 45
4.5. Reports ... 50
4.6. The About Box, and More ... 51

5. The Source Code ... 53
5.1. DataInuptUnit Unit .. 53
5.2. NativeUnit Unit.. 62
5.3. AprioriUnit Unit... 69
5.4. FinalAssociationUnit unit .. 78
5.5. ProgressUnit Unit... 82
5.6. ResizeTableUnit Unit... 83
5.7. AboutUnit Unit .. 85
5.8. Sets Unit... 86
5.9. LinkedList Unit .. 92
5.10. HashTable Unit ... 94

6. Summary ... 98
6.1. Future Work .. 98

7. Acknowledgments ... 100
8. References ... 101

- 5 -

Abstract

In this paper, we introduce the concept of association rules, which is a part of a larger
filed, called data mining. We show algorithms developed by Ageawal and his team,
from the IBM Almaden Research Center, to discover association among data in large
databases, we also consider an extension to that algorithm, to discover inverse
association rules, and implementation of both algorithms.

1. Knowledge Discovery in Databases and Data Mining1

1.1. Introduction

The starve for knowledge is the main characteristic of the human being. The path to
knowledge lies through accumulating data and interpreting it. Throughout the years,
we have accumulated a huge amount of data. Advances in data collection, the
computerization of many business and government transactions, the width spread use
of credit cards and so on, have flooded us with information, and created a great
demand for new techniques and powerful tools that can intelligently and automatically
assist us in transforming this data into useful task-oriented knowledge. These tools
and techniques are the subject of the rapidly emerging field of knowledge discovery in
databases (KDD).

Examples for this growing amount of data are easy to find. Most health-care
transactions in the U.S. are being stored in computers, yielding multi-gigabyte
databases, which many large companies are beginning to analyze in order to control
costs and improve quality. There are huge scientific databases as well. The human
genome database project has collected gigabytes of data on the human genetic code
and much more is expected. A database housing a sky object catalog from a major
astronomy sky survey consists of billions of entries with raw image data sizes
measured in terabytes. The NASA Earth Observing System of orbiting satellites and
other spaceborne instruments is projected to generate on the order of 50 gigabytes of
remotely sensed image data per hour when operational in the late 1990s and early in
the next century.

This huge amount of data, obviously, cannot be treated with the traditional manual
methods of data analysis such as spreadsheets. Those methods can create reports, such
as distribution analysis, but they can’t analyze the contents of those reports to focus us
on important knowledge. In efforts to satisfy the need for new powerful tools and
techniques, researchers have been exploring ideas and methods developed in machine
learning, pattern recognition, statistical data analysis, data visualization, neural nets,
etc. Those tools and techniques has the ability to intelligently and automatically assist
humans in analyzing the growing amount of data, and they are the subject of the
emerging field of knowledge discovery in databases (KDD).

Historically the notion of finding useful patterns in raw data has been given various
names, including knowledge discovery in databases, data mining, knowledge

1 Mostly based on [6].

- 6 -

extraction, information discovery, information harvesting, data archaeology, and data
pattern Processing. The term knowledge discovery in databases, or KDD for short,
was coined in 1989 to refer to the broad process of finding knowledge in data, and to
emphasize the “high-level” application of particular data mining methods. The term
data mining has been commonly used by statisticians, data analysts and the MIS
(Management Information Systems) community, while KDD has been mostly used by
artificial intelligence and machine learning researchers. In this paper we adopt the
view that KDD refers to the overall process of discovering useful knowledge from
data while data mining refers to the application of algorithms for extracting patterns
from data without the additional steps of the KDD process.

1.2. Links Between KDD and Related Fields

KDD is of interest to researchers in machine learning, pattern recognition, databases,
statistics, artificial intelligence, knowledge acquisition for expert systems, and data
visualization. KDD systems typically draw upon methods, algorithms, and techniques
from these diverse fields. The unifying goal is extracting knowledge from data in the
context of large databases.

In the fields of machine learning and pattern recognition, overlap with KDD lies in the
study of theories and algorithms for systems which extract patterns and models from
data (mainly data mining methods). KDD focuses on the extension of these theories
and algorithms to the problem of finding special patterns (ones that may be interpreted
as useful or interesting knowledge) in large sets of real-world data. KDD also has
much in common with statistics, particularly exploratory data analysis (EDA). KDD
systems often embed particular statistical procedures for modeling data and handling
noise within an overall knowledge discovery framework.

Machine discovery which targets the discovery of empirical laws from observation
and experimentation, and causal modeling for the inference of causal models from
data are related research areas.

Another related area is data warehousing, which refers to the recently popular MIS
trend for collecting and cleaning transactional data and making them available for
on-line retrieval. A popular approach for analysis of data warehouses has been called
OLAP (on-line analytical processing), after a new set of principles proposed by Codd
(1993). OLAP tools focus on providing multi-dimensional data analysis, which is
superior to SQL (standard query language) in computing summaries and breakdowns
along many dimensions. We view both knowledge discovery and OLAP as related
facets of a new generation of intelligent information extraction and management tools.

1.3. A Definition of Knowledge Discovery in Databases

We first start with a general statement of this definition in words:

Knowledge discovery in databases is the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data.

- 7 -

Let us examine these terms in more detail.

 • Data is a set of facts F (e.g., cases in a database).
 • Pattern is an expression E in a language L describing facts in a subset FE of F. E

is called a pattern if it is simpler (in some sense, see below) than the enumeration
of all facts in FE. For example, the pattern: “If income<$t, then person has
defaulted on the loan” would be one such pattern for an appropriate choice of t.

 • Process: Usually in KDD, process is a multi-step process, which involves data
preparation, search for patterns, knowledge evaluation, and refinement involving
iteration after modification. The process is assumed to be non-trivial - that is, to
have some degree of search autonomy.

 • Validity: The discovered patterns should be valid on new data with some degree of
certainty. A measure of certainty is a function C mapping expressions in L to a
partially or totally ordered measurement space MC. An expression E in L about a
subset FE⊂F can be assigned a certainty measure c=C(E,F).

 • Novel: The patterns are novel (at least to the system). Novelty can be measured
with respect to changes in data (by comparing current values to previous or
expected values) or knowledge (how a new finding is related to old ones). In
general, we assume this can be measured by a function N(E,F), which can be a
boolean function or a measure of degree of novelty or unexpectedness.

 • Potentially Useful: The patterns should potentially lead to some useful actions, as
measured by some utility function. Such a function U maps expressions in L to a
partially or totally ordered measure space Mu: hence, u=U(E,F).

 • Ultimately Understandable: A goal of KDD is to make patterns understandable to
humans in order to facilitate a better understanding of the underlying data. While
this is difficult to measure precisely, one frequent substitute is the simplicity
measure. Several measures of simplicity exist, and they range from the purely
syntactic (e.g., the size of a pattern in bits) to the semantic (e.g., easy for humans
to comprehend in some setting). We assume this is measured, if possible, by a
function S mapping expressions E in L to a partially or totally ordered measure
space Ms: hence, s= S(E,F).

An important notion, called interestingness, is usually taken as an overall measure of
pattern value, combining validity, novelty, usefulness, and simplicity. Some KDD
systems have an explicit interestingness function i=I(E,F,C,N,U,S) which maps
expressions in L to a measure space M1. Other systems define interestingness
indirectly via an ordering of the discovered patterns.

The purpose of this definition given above, is specify what an algorithm used in a
KDD process may consider knowledge.

 • Knowledge: A pattern E∈L is called knowledge if for some user-specified
threshold i∈M1, I(E,F,C,N,U,S) > i.

Note that this definition of knowledge is by no means absolute. In fact, it is purely
user-oriented, and determined by whatever functions and thresholds the user chooses.
For example, one instantiation of this definition is to select some thresholds c∈MC,

- 8 -

s∈MS, and u∈MU, and calling a pattern E knowledge if and only if C(E,F)>c and
SIE,F)>s and U(S,F)>u.

By appropriate settings of thresholds, one can emphasize accurate predictors or useful
(by some cost measure) patterns over others. Clearly, there is an infinite space of how
the mapping I can be defined. Such decisions are left to the user and the specifics of
the domain.

Data Mining is a step in the KDD process consisting of particular data mining
algorithms that, under some acceptable computational efficiency limitations, produces
a particular enumeration of patterns Ej over F.

Note that the space of patterns is often infinite, and the enumeration of patterns
involves some form of search in this space. The computational efficiency constraints
place severe limits on the subspace that can be explored by the algorithm.

KDD Process is the process of using data mining methods (algorithms) to extract
(identify) what is deemed knowledge according to the specifications of measures and
thresholds, using the database F along with any required preprocessing, subsampling,
and transformations of F.

The data mining component of the KDD process is mainly concerned with means by
which patterns are extracted and enumerated from the data. Knowledge discovery
involves the evaluation and possibly interpretation of the patterns to make the
decision of what constitutes knowledge and what does not. It also includes the choice
of encoding schemes, preprocessing, sampling, and projections of the data prior to the
data-mining step.

1.4. The KDD Process

The KDD process is interactive and iterative, involving numerous steps with many
decisions being made by the user. Brachman & Anand ([8]) give a practical view of
the KDD process emphasizing the interactive nature of the process. Here we broadly
outline some of its basic steps:

 1. Developing an understanding of the application domain, the relevant prior
knowledge, and the goals of the end-user.

 2. Creating a target data set: selecting a data set, or focusing on a subset of variables
or data samples, on which discovery is to be performed.

 3. Data cleaning and preprocessing: basic operations such as the removal of noise or
outliers if appropriate, collecting the necessary information to model or account
for noise, deciding on strategies for handling missing data fields, accounting for
time sequence information and known changes.

 4. Data reduction and projection: finding useful features to represent the data
depending on the goal of the task. Using dimensionality reduction or
transformation methods to reduce the effective number of variables under
consideration or to find invariant representations for the data.

- 9 -

 5. Choosing the data mining task: deciding whether the goal of the KDD process is
classification, regression, clustering, etc.

 6. Choosing the data mining algorithm(s): selecting method(s) to be used for
searching for patterns in the data. This includes deciding which models and
parameters may be appropriate (e.g. models for categorical data are different than
models on vectors over the reals) and matching a particular data mining method
with the overall criteria of the KDD process (e.g. the end-user may be more
interested in understanding the model than its predictive capabilities).

 7. Data mining: searching for patterns of interest in a particular representational form
or a set of such representations: classification rules or trees, regression, clustering,
and so forth. The user can significantly aid the data mining method by correctly
performing the preceding steps.

 8. Interpreting mined patterns, possible return to any of steps 1-7 for further
iteration.

 9. Consolidating discovered knowledge: incorporating this knowledge into the
performance system, or simply documenting it and reporting it to interested
parties. This also includes checking for and resolving potential conflicts with
previously believed (or extracted) knowledge.

The KDD process can involve significant iteration and may contain loops between
any two steps. The basic flow of steps (although not the potential multitude of
iterations and loops) is illustrated in Figure 1. Most previous work on KDD has
focused on step 7 - the data mining. However, the other steps are of considerable
importance for the successful application of KDD in practice.

Data Target Data

Selection

Preprocessing
Transformation

Data Mining

Interpretation/
Evaluation

Preprocessed
Data

Transformed
Data

Patterns
Knowledge

Figure 1 – An Overview of the steps comprising the KDD process

Having defined the basic notions and introduced the KDD process, we now focus on
the data mining component, which has by far received the most attention in the
literature.

1.5. An Overview of Data Mining Methods

The data mining component of the KDD process often involves repeated iterative
application of particular data mining methods. The objective of this section is to
present a unified overview of some of the most popular data mining methods in
current use. We use the terms patterns and models loosely throughout this chapter: a

- 10 -

pattern can be thought of as instantiation of a model, e.g., f(x)=3x2+x is a pattern
whereas f(z)=αx2+βx is considered a model.

Data mining involves fitting models to, or determining patterns from, observed data.
The fitted models play the role of inferred knowledge: whether or not the models
reflect useful or interesting knowledge is part of the overall, interactive KDD process
where subjective human judgment is usually required. There are two primary
mathematical formalisms used in model fitting: the statistical approach allows for
non-deterministic effects in the model (for example, f(x)=αx+e where e could be a
Gaussian random variable), whereas a logical model is purely deterministic (f(x)=αx)
and does not admit the possibility of uncertainty in the modeling process. We will
focus primarily on the statistical/probabilistic approach to data mining: this tends to
be the most widely-used basis for practical data mining applications given the typical
uncertainty about the exact nature of real-world data-generating processes.

Most data mining methods are based on concepts from machine learning, pattern
recognition and statistics: classification, clustering, graphical models, and so forth.
The array of different algorithms for solving each of these problems can often be quite
bewildering to both the experienced data analyst and the novice. In this section, we
offer a brief overview of data mining methods and in particular try to convey the
notion that most (if not all) methods can be viewed as extensions or hybrids of a few
basic techniques and principles.

The section begins by discussing the primary tasks of data mining and then shows that
the data mining methods to address these tasks consist of three primary algorithmic
components: model representation, model evaluation, and search. The section
concludes by discussing particular data mining algorithms within this framework.

1.5.1. The Primary Tasks of Data Mining

The two “high-level” primary goals of data mining in practice tend to be prediction
and description. Prediction involves using some variables or fields in the database to
predict unknown or future values of other variables of interest. Description focuses on
finding human-interpretable patterns describing the data. The relative importance of
prediction and description for particular data mining applications can vary
considerably. However, in the context of KDD, description tends to be more
important than prediction. This is in contrast to pattern recognition and machine
learning applications (such as speech recognition) where prediction is often the
primary goal.

The goals of prediction and description are achieved by using the following primary
data mining tasks.

 • Classification is learning a function that maps (classifies) a data item into one of
several predefined classes. Examples of classification methods used as part of
knowledge discovery applications include classifying trends in financial markets
and automated identification of objects of interest in large image databases.

- 11 -

 • Regression is learning a function, which maps a data item to a real-valued
prediction variable. Regression applications are many, e.g., predicting the amount
of biomass present in a forest given remotely-sensed microwave measurements,
estimating the probability that a patient will die given the results of a set of
diagnostic tests, predicting consumer demand for a new product as a function of
advertising expenditure, and time series prediction where the input variables can
be time-lagged versions of the prediction variable.

 • Clustering is a common descriptive task where one seeks to identify a finite set of
categories or clusters to describe the data. Given a set of attritional descriptions of
some entities, a description language for characterizing classes of such entities,
and a classification quality criterion, the problem is to partition entities into classes
in a way that maximizes the classification quality criterion, and simultaneously to
determine general (extensional) descriptions of the classes in the given description
language. The categories may be mutually exclusive and exhaustive, or consist of
a richer representation such as hierarchical or overlapping categories. Examples of
clustering applications in a knowledge discovery context include discovering
homogeneous sub-populations for consumers in marketing databases and
identification of sub-categories of spectra from infrared sky measurements.
Closely related to clustering is the task of probability density estimation, which
consists of techniques for estimating from data the joint multivariate probability
density function of all of the variables/fields in the database.

 • Summarization involves methods for finding a compact description for a subset of
data. A simple example would be tabulating the mean and standard deviations for
all fields. More sophisticated methods involve the derivation of summary rules,
multivariate visualization techniques, and the discovery of functional relationships
between variables. Summarization techniques are often applied to interactive
exploratory data analysis and automated report generation.

 • Dependency Modeling consists of finding a model, which describes significant
dependencies between variables. Dependency models exist at two levels: the
structural level of the model specifies (often in graphical form) which variables
are locally dependent on each other, whereas the quantitative level of the model
specifies the strengths of the dependencies using some numerical scale. For
example, probabilistic dependency networks use conditional independence to
specify the structural aspect of the model and probabilities or correlations to
specify the strengths of the dependencies. Probabilistic dependency networks are
increasingly finding applications in areas as diverse as the development of
probabilistic medical expert systems from databases, information retrieval, and
modeling of the human genome.

 • Change and Deviation Detection focuses on discovering the most significant
changes in the data from previously measured or normative values.

1.5.2. The Components of Data Mining Algorithms

Having outlined the primary tasks of data mining, the next step is to construct
algorithms to solve them. One can identify three primary components in any data
mining algorithm: model representation, model evaluation, and search. This
reductionist view is not necessarily complete or fully encompassing: rather, it is a

- 12 -

convenient way to express the key concepts of data mining algorithms in a relatively
unified and compact manner.

 • Model Representation is the language L for describing discoverable patterns. If the
representation is too limited, then no amount of training time or examples will
produce an accurate model for the data. For example, a decision tree
representation, using univariate (single-field) node-splits, partitions the input space
into hyper-planes, which are parallel to the attribute axes. Such a decision-tree
method cannot discover from data the formula x=y no matter how much training
data it is given. Thus, it is important that a data analyst fully comprehend the
representational assumptions, which may be inherent to a particular method. It is
equally important that an algorithm designer clearly state which representational
assumptions are being made by a particular algorithm. Note that more powerful
representational power for models increases the danger of overfitting the training
data resulting in reduced prediction accuracy on unseen data. In addition the
search becomes much more complex and interpretation of the model is typically
more difficult.

 • Model Evaluation estimates how well a particular pattern (a model and its
parameters) meet the criteria of the KDD process. Evaluation of predictive
accuracy (validity) is based on cross validation. Evaluation of descriptive quality
involves predictive accuracy, novelty, utility, and understandability of the fitted
model. Both logical and statistical criteria can be used for model evaluation. For
example, the maximum likelihood principle chooses the parameters for the model,
which yield the best fit to the training data.

 • Search Method consists of two components: Parameter Search and Model Search.
In parameter search the algorithm must search for the parameters which optimize
the model evaluation criteria given observed data and a fixed model
representation. For relatively simple problems there is no search: the optimal
parameter estimates can be obtained in closed form. Typically, for more general
models, a closed form solution is not available: greedy iterative methods are
commonly used, e.g., the gradient descent method of backpropagation for neural
networks. Model Search occurs as a loop over the parameter search method: the
model representation is changed so that a family of models are considered. For
each specific model representation, the parameter search method is instantiated to
evaluate the quality of that particular model. Implementations of model search
methods tend to use heuristic search techniques since the size of the space of
possible models often prohibits exhaustive search and closed form solutions are
not easily obtainable.

1.6. A Discussion of Popular Data Mining Methods

There exist a wide variety of data mining methods: here we only focus on a subset of
popular techniques. Each method is discussed in the context of model representation,
model evaluation, and search.

1.6.1. Decision Trees and Rules

- 13 -

A decision tree can be transformed into a set of decision rules (a ruleset) by traversing
all paths from the root to individual leaves. Such rules can often be simplified by
detecting superfluous conditions in them. Decision trees and rules that use univariate
splits have a simple representational form, making the inferred model relatively easy
to comprehend by the user. However, the restriction to a particular tree or rule rep-
resentation can significantly restrict the functional form (and thus the approximation
power) of the model. If one enlarges the model space to allow more general
expressions (such as multivariate hyper-planes at arbitrary angles), then the model is
more powerful for prediction but may be much more difficult to comprehend. There
are a large number of decision trees and rule induction algorithms described in the
machine learning and applied statistics literature.

To a large extent they are based on likelihood-based model evaluation methods with
varying degrees of sophistication in terms of penalizing model complexity. Greedy
search methods, which involve growing and pruning rule and tree structures, are
typically employed to explore the super-exponential space of possible models. Trees
and rules are primarily used for predictive modeling, both for classification and
regression, although they can also be applied to summary descriptive modeling.

1.6.2. Nonlinear Regression and Classification Methods

These methods consist of a family of techniques for prediction, which fit linear and
non-linear combinations of basis functions (sigmoids2, splines, and polynomials) to
combinations of the input variables. Examples include feedforward neural networks,
adaptive spline methods, projection pursuit regression, and so forth. In terms of model
evaluation, while networks of the appropriate size can universally approximate any
smooth function to any desired degree of accuracy, relatively little is known about the
representation properties of fixed size networks estimated from finite data sets. In
terms of model evaluation, the standard squared error and cross entropy loss functions
used to train neural networks can be viewed as log-likelihood functions for regression
and classification respectively. Backpropagation is a parameter search method, which
performs gradient descent in parameter (weight) space to find a local maximum of the
likelihood function starting from random initial conditions. Nonlinear regression
methods, though powerful in representational power, can be very difficult to interpret.

1.6.3. Example-based Methods

The representation is simple: use representative examples from the database to
approximate a model, i.e., predictions on new examples are derived from the
properties of “similar” examples in the model whose prediction is known. Techniques
include nearest-neighbor classification and regression algorithms and case-based
reasoning systems.

A Potential disadvantage of example-based methods (compared with tree-based
methods for example) is that a well-defined distance metric for evaluating the distance
between data points is required. Model evaluation is usually based on cross-validation

2 Having the shape of the letter S.

- 14 -

estimates of a prediction error: “parameters” of the model to be estimated can include
the number of neighbors to use for prediction and the distance metric itself. Like
non-linear regression methods, example-based methods are often asymptotically quite
powerful in terms of approximation properties, but conversely can be difficult to
interpret since the model is implicit in the data and not explicitly formulated. Related
techniques include kernel density estimation and mixture modeling.

1.6.4. Probabilistic Graphical Dependency Models

Graphical models specify the probabilistic dependencies which underlie a particular
model using a graph structure. In its simplest form, the model specifies which
variables are directly dependent on each other. Typically, these models are used with
categorical or discrete-valued variables, but extensions to special cases, such as
Gaussian densities, for real-valued variables are also possible. Within the artificial
intelligence and statistical communities these models were initially developed within
the framework of probabilistic expert systems: the structure of the model and the
parameters (the conditional probabilities attached to the links of the graph) were
elicited from experts. More recently, there has been significant work in both the AI
and statistical communities on methods whereby both the structure and parameters of
graphical models can be learned from databases directly. Model evaluation criteria are
typically Bayesian in form and parameter estimation that can be a mixture of closed
form estimates and iterative methods depending on whether a variable is directly
observed or hidden. Model search can consist of greedy hill-climbing methods over
various graph structures. Prior knowledge, such as a partial ordering of the variables
based on causal relations, can be quite useful in terms of reducing the model search
space. Although still primarily at the research phase, graphical model induction
methods are of particular interest to KDD since the graphical form of the model lends
itself easily to human interpretation.

1.6.5. Relational Learning Models

While decision-trees and rules have a representation restricted to propositional logic,
relational learning (also known as inductive logic programming) uses the more
flexible pattern language of first-order logic. A relational learner can easily find
formulas such as X=Y. Most research so far on model evaluation methods for
relational learning are logical in nature. The extra representational power of relational
models comes at the price of significant computational demands in terms of search.

Given the broad spectrum of data mining methods and algorithms, our brief overview
is inevitably limited in scope: there are many data mining techniques, particularly
specialized methods for particular types of data and domains, which were not
mentioned specifically in the discussion. We believe the general discussion on data
mining tasks and components has general relevance to a variety of methods. For
example, consider time series prediction: traditionally this has been cast as a
predictive regression task (autoregressive models and so forth). Recently, more
general models have been developed for time series applications such as non-linear
basis function, example-based, and kernel methods. Furthermore, there has been
significant interest in descriptive graphical and local data modeling of time series

- 15 -

rather than purely predictive modeling. Thus, although different algorithms and
applications may appear quite different on the surface, it is not uncommon to find that
they share many common components. Understanding data mining and model
induction at this component level clarifies the task of any data mining algorithm and
makes it easier for the user to understand its overall contribution and applicability to
the KDD process.

We would like to remind the reader that our discussion and overview of data mining
methods has been both cursory and brief. There are two important points we would
like to make clear:

 1. Automated Search: Our brief overview has focused mainly on automated
methods for extracting patterns and/or models from data. While this is
consistent with the definition we gave earlier, it does not necessarily represent
what other communities might refer to as data mining. For example, some use
the term to designate any manual search of the data, or search assisted by
queries to a DBMS or humans visualizing patterns in data as data mining. In
other communities, it is used to refer to the automated correlation of data from
transactions or the automated generation of transaction reports. We choose to
focus only on methods that contain certain degrees of search autonomy.

 2. Beware the Hype: The state-of-the-art in automated methods in data mining is
still in a fairly early stage of development. There are no established criteria for
deciding which methods to use in which circumstances, and many of the
approaches are based on crude heuristic approximations to avoid the expensive
search required to find optimal or even good solutions. Hence, the reader should
be careful when confronted with overstated claims about the great ability of a
system to mine useful information from large (or even small) databases.

1.7. Application Issues

In the business world, the most successful and widespread application of KDD is
“Database Marketing,” which is a method of analyzing customer databases, looking
for patterns among existing customer preferences and using those patterns for more
targeted selection of future customers. Business Week, a popular business magazine
in the United States, carried a cover story on Database Marketing that estimated that
over 50% of all retailers are using or planning to use database marketing. The reason
is simple - significant results can be obtained using this approach: e.g., a
15-20-percentage increase in credit-card purchases reported by American Express.

Another major business use of data mining methods is the analysis and selection of
stocks and other financial instruments. There are already numerous investment
companies, which pick stocks using a variety of advanced data mining methods.

Several successful applications have been developed for analysis and reporting on
change in data. These include Coverstory from IRI, Spotlight from A. C. Nielsen for
supermarket sales data, and KEFIR from GTE, for health care databases.

- 16 -

Fraud detection and prevention is another area where KDD plays a role. While there
have been many applications, published information is, for obvious reasons, not
readily available. Here we mention just a few noteworthy examples. A system for
detecting healthcare provider fraud in electronically submitted claims, has been
developed at Travelers Insurance. The Internal Revenue Service has developed a pilot
system for selecting tax returns for audits. Neural network based tools, such as Nestor
FDS have been developed for detecting credit-card fraud and are reportedly watching
millions of accounts.

A number of interesting and important scientific applications of KDD have also been
developed. Example application areas in science include

 • Astronomy: The SKICAT system from JPL/Caltech is used by astronomers to
automatically identify stars and galaxies in a large-scale sky survey for cataloging
and scientific analysis.

 • Molecular Biology: Systems have been developed for finding patterns in
molecular structures and in genetic data.

 • Global Climate Change Modeling: Spatio-temporal patterns such as cyclones are
automatically found from large simulated and observational datasets.

1.7.1. Guidelines for Selecting a Potential KDD Application

The criteria for selecting applications can be divided into practical and technical. The
practical criteria for KDD projects are similar to those for other application of
advanced technology, while the technical ones are more specific to KDD.

Practical criteria include consideration of the potential for significant impact of an
application. For business applications, this could be measured by criteria such as
greater revenue, lower costs, higher quality, or savings in time. For scientific
applications, the impact can be measured by the novelty and quality of the discovered
knowledge and by increased access to data via automating manual analysis processes.
Another important practical consideration is that no good alternatives exist: the
solution is not easily obtainable by other standard means. Hence, the ultimate user has
a strong vested interest in insuring the success of the KDD venture. Organizational
support is another consideration: there should be a champion for using new
technology; e.g. a domain expert who can define a proper interestingness measure for
that domain as well as participate in the KDD process. Finally, an important practical
consideration is the potential for privacy/legal issues. This applies primarily to
databases on people where one needs to guard against the discovered patterns raising
legal or ethical issues of invasion of privacy.

Technical criteria include considerations such as the availability of sufficient data
(cases). The number of examples (cases) required for reliable inference of useful
patterns from data varies a great deal with each particular application. In general, the
more fields there are and the more complex are the patterns being sought, the more
data are needed. However, strong prior knowledge can reduce the number of needed
cases significantly. Another consideration is the relevance of attributes. It is

- 17 -

important to have data attributes relevant to the discovery task: no amount of data will
allow prediction based on attributes that do not capture the required information.

Furthermore, low noise levels (few data errors) is another consideration. High
amounts of noise make it hard to identify patterns unless a large number of cases can
mitigate random noise and help clarify the aggregate patterns. A related consideration
is whether one can attach confidence intervals to extracted knowledge. In some
applications, it is crucial to attach confidence intervals to predictions produced by the
KDD system. This allows the user to calibrate actions appropriately.

Finally, and perhaps one of the most important considerations is prior knowledge. It
is very useful to know something about the domain - what are the important fields,
what are the likely relationships, what is the user utility function, what patterns are
already known, and so forth. Prior knowledge can significantly reduce the search in
the data mining step and all the other steps in the KDD process.

1.7.2. Privacy and Knowledge Discovery

When dealing with databases of personal information, governments and businesses
have to be careful to adequately address the legal and ethical issues of invasion of
privacy. Ignoring this issue can be dangerous, as Lotus found in 1990, when they were
planning to introduce a CDROM with data on about 100 million American
households. The stormy protest led to the withdrawal of that product.

Current discussion centers around guidelines for what constitutes a proper discovery.
The Organization for Economic Cooperation and Development (OECD) guidelines
for data privacy, which have been adopted by most European Union countries,
suggest that data about specific living individuals should not be analyzed without their
consent. They also suggest that the data should only be collected for a specific
purpose. Use for other purposes is possible only with the consent of the data subject
or by authority of the law.

In the U.S. there is ongoing work on draft principles for fair information use related to
the National Information Infrastructure (NII), Commonly known as the “information
superhighway.” These principles permit the use of “transactional records,” such as
telephone numbers called, credit card payments, etc., as long as such use is
compatible with the original notice. The use of transactional records can be seen to
also include discovery of patterns.

In many cases (e.g. medical research, socioeconomic studies) the goal is to discover
patterns about groups, not individuals. While group pattern discovery appears not to
validate the restrictions on personal data retrieval, an ingenious combination of
several group patterns, especially in small databases, may allow identification of
specific personal information. Solutions which allow group pattern discovery while
avoiding the potential invasion of privacy include removal or replacement of
identifying fields, performing queries on random subsets of data, and combining
individuals into groups and allowing only queries on groups.

- 18 -

1.7.3. Research and Application Challenges for KDD

We outline some of the current primary research and application challenges for
knowledge discovery. This list is by no means exhaustive. The goal is to give the
reader a feel for the types of problems that KDD practitioners wrestle with.

 • Larger databases. Databases with hundreds of fields and tables, millions of
records, and multi-gigabyte size are quite commonplace, and terabyte (1012 bytes)
databases are beginning to appear. For example, next in this paper we present
efficient algorithms for enumerating all association rules exceeding given
confidence thresholds over large databases. Other possible solutions include
sampling, approximation methods, and massively parallel processing.

 • High dimensionality. Not only is there often a very large number of records in the
database, but there can also be a very large number of fields (attributes, variables)
so that the dimensionality of the problem is high. A high dimensional data set
creates problems in terms of increasing the size of the search space for model
induction in a combinatorially explosive manner. In addition, it increases the
chances that a data mining algorithm will find spurious patterns that are not valid
in general. Approaches to this problem include methods to reduce the effective
dimensionality of the problem and the use of prior knowledge to identify irrelevant
variables.

 • Overfitting. When the algorithm searches for the best parameters for one particular
model using a limited set of data, it may over fit the data, resulting in poor
performance of the model on test data. Possible solutions include cross-validation,
regularization, and other sophisticated statistical strategies.

 • Assessing statistical significance. A problem (related to overfitting) occurs when
the system is searching over many possible models. For example, if a system tests
N models at the 0.001 significance level, then on average, with purely random
data, N/1000 of these models will be accepted as significant. This point is
frequently missed by many initial attempts at KDD. One way to deal with this
problem is to use methods which adjust the test statistic as a function of the search.

 • Changing data and knowledge. Rapidly changing (non-stationary) data may make
previously discovered patterns invalid. In addition, the variables measured in a
given application database may be modified, deleted, or augmented with new
measurements over time. Possible solutions include incremental methods for
updating the patterns and treating change as an opportunity for discovery by using
it to cue the search for patterns of change only.

 • Missing and noisy data. This problem is especially acute in business databases.
U.S. census data reportedly has error rates of up to 20%. Important attributes may
be missing if the database was not designed with discovery in mind. Possible
solutions include more sophisticated statistical strategies to identify hidden
variables and dependencies.

 • Complex relationships between fields. Hierarchically structured attributes or
values, relations between attributes, and more sophisticated means for representing
knowledge about the contents of a database will require algorithms that can
effectively utilize such information. Historically, data mining algorithms have
been developed for simple attribute-value records, although new techniques for
deriving relations between variables are being developed.

- 19 -

 • Understandability of patterns. In many applications, it is important to make the
discoveries more understandable by humans. Possible solutions include graphical
representations, rule structuring with directed acyclic graphs, natural language
generation and techniques for visualization of data and knowledge. Rule
refinement strategies can be used to address a related problem: the discovered
knowledge may be implicitly or explicitly redundant.

 • User interaction and prior knowledge. Many current KDD methods and tools are
not truly interactive and cannot easily incorporate prior knowledge about a
problem except in simple ways. The use of domain knowledge is important in all
of the steps of the KDD process. Bayesian approaches use prior probabilities over
data and distributions as one form of encoding prior knowledge.

 • Integration with other systems. A stand-alone discovery system may not be very
useful. Typical integration issues include integration with a DBMS (e.g. via a
query interface), integration with spreadsheets and visualization tools, and
accommodating real-time sensor readings.

- 20 -

2. Association Rules

2.1. Introduction to Association Rules

Data mining, or the efficient discovery of interesting patterns from large collection of
data, has been recognized as an important area of database research. The most
commonly sought patterns are association rules as introduced in [3]. Intuitively, an
association rule identifies a frequently occurring pattern of information in a database.
For example, consider a department store database where the set of items purchased
by a single customer is recorded as a transaction. The department store owner may be
interested in finding an association among the items purchased together. An example
of such association is that if a customer buys bread and butter then it is likely he will
buy milk. Given a set of transactions, where each transaction is a set of items, an
association rule is an expression X⇒Y, where X and Y are sets of items. The intuitive
meaning of such a rule is that transactions of database, which contain items in X, also
tend to contain items in Y.

Agrawal ([3]) gives an example for using association rules. Consider a supermarket
with a large collection of items (this supermarket example will follow us throughout
the entire paper). Typical business decisions that the management has to make include
such things as what to put on sale, how to place merchandise on the shelves in order
to maximize the profit, and so on. Analysis of past transactions data, is commonly
used in order to help making such decisions. Using association rules mining
techniques we can look for association in a transactions database, that can help us
make management decisions. Examples for such association rules are:

1. Find all rules that have “Diet Coke” as consequent. These rules may help plan
what the store should do to boost the sale of Diet Coke.

2. Find all rules that have “bagels” in the antecedent. These rules may help
determine what products may be impacted if the store discontinues selling bagels.

3. Find all rules that have “sausage” in the antecedent and “mustard” in the
consequent. This query can be phrased alternatively as a request for the additional
items that have to be sold together with sausage in order to make it highly likely
that mustard will also be soled.

4. Find all rules relating items located on shelves A and B in the store. These rules
may help shelf planning by determining if the sale of items on shelf A is related to
the sale of items on shelf B.

5. Find the “best” k rules that have “bagels” in the consequent. Here, “best” can be
formulated in terms of the confidence factor of the rules, or in the terms of their
support, i.e., the factor of transactions satisfying the rule.

2.2. Formal Model

The following is a formal statement of the problem (as introduced in [3], but in a more
general manner, in that it allows a consequent to have more than one item). Let
I={i1,i2,...,im} be a set of attributes over the binary domain {0,1}, called items. Let T
be a database of transactions, in which each transaction t is represented as a binary
vector, with t[k]=1 if t bought the item Ik, and t[k]=0 otherwise. There is one tuple in

- 21 -

the database for each transaction. Let X be a set of some items in I. We say that a
transaction t satisfies X if for all items Ik in X, t[k]=1.

By an association rules, we mean an implication of the form X⇒Y, where X and Y are
sets of some items in I (X⊆I, Y⊆I), and any item Ij which is in X, is not present in Y,
and vice versa (X∩Y=∅). Negative or missing items, are not considered of interest in
this approach3. The rule X⇒Y holds in the transaction set T with confidence factor
0≤minconfidence≤1 if c% of the transactions in T that contain X also contain Y.

Given a set of transactions T, the problem of mining association rules is to generate
all association rules that have a certain user-specified constraints of two different
forms:
1. Syntactic Constraints: These constraints involve restrictions on items that can

appear in a rule. For example, we may be interested only in rules that have a
specific item, Ix appearing in the consequent (or in the antecedent). A combination
of some constraints is also possible.

2. Support Constraints: These constraints concern the number of transactions in T
that support a rule. The support is defined as the percentage of the transactions
that have both items of the antecedent and consequent in them. Support shouldn’t
be confused with confidence. While confidence defines the rules strength, support
is a statistical measurement.

Considering we intend to use the support constraints, the problem of mining the
association rules, can be divided into two sub-problems.
1. Generating all combinations of items that have a certain satisfying support. A

satisfying support is a support, which is above a certain threshold called
minsupport. Items that satisfy the support constraint are called large itemsets, and
all the others are called small itemsets. We can use both syntactic and support
constrains, for example, we might be interested in association rules that have Ix in
the antecedent, and also have a certain support.

2. For a given large itemset L=i1,i2…ik, k>1, generate all rules that use items from
the set L. The antecedent of each rule will be a subset X of L, and the consequent
will be a subset Y of L, such that X,Y≠∅ and Y=L-X, therefore X∩Y=∅ and
X∪Y=L. To generate a rule X⇒Y, with a confidence c, take the support of L and
divide it by the support of X. If the ratio generated, is greater then or equal to
minconfidence then the rule is satisfied with the confidence factor c, otherwise it is
not.

2.3. Related work

Related but not directly applicable work includes the induction of classification rules,
discovery of causal rules, learning of logical definitions, fitting of functions to data
and clustering.

 3 The problem of finding association rules when having negative items as well, will be approached
 later in this paper.

- 22 -

The closest work in the machine learning literature is the KID3 algorithm. If used for
finding all association rules, this algorithm will make as many passes over the data as
the number of combinations of items in the antecedent, which is exponentially large.

Related work in the database literature is the work on inferring functional
dependencies for data.

There has been work on quantifying the “usefulness” or “interestingness” of a rule.
What is useful or interesting is often application-dependent. The need for a human in
the loop and providing tools to allow human guidance of the rule discovery process
has been articulated.

2.4. Discovering Large Itemsets

Algorithms for discovering large itemsets make multiple passes over the data. In the
first pass, we count the support of each individual item and determine which items are
large (which items have a support equal to or greater than minsupport). Then, in each
subsequent pass, we start with a seed set of itemsets that found to be large in the
previous pass. We use this seed set for generating new potentially large itemsets,
called candidate itemsets, and count the actual support for these candidate itemsets
during the pass over the data. At the end of the pass, we determine which of the
candidate itemsets are actually large, and they become the seed for the next pass. This
process continues until no new large itemsets are found.

2.4.1. AIS Algorithm

Figure 2 gives the AIS algorithm for finding large itemsets, as presented in [3].

procedure LargeItemsets
begin
 let Large set L=∅
 let Frontier set F={∅}

 while F≠∅ do begin
 // make a pass over the database
 let Candidate set C=∅
 forall database tuples t do
 forall itemsets f in F do
 let Cf=candidate itemsets that are extensions of f and contained in t
 forall itemsets cf in Cf do
 if cf∈C then
 cf.count=cf.count+1
 else
 cf.count=0
 C=C+cf

 end
 end

- 23 -

 // consolidate
 let F=∅
 forall itemsets c in C do begin
 if count(c)/dbsize>minsupport then
 L=L+c
 If c should be used as frontier in the next pass then
 F=F+c
 end
 end
 end

Figure 2 – AIS Algorithm

Given a set of items I, and an itemset X+Y of items in I is said to be an extension of
the itemset X if X∩Y=∅. The parameter dbsize is the total number of tuples in the
database.

The algorithm makes multiple passes over the database. The frontier set for a pass
consists of those itemsets that are extended during the pass. In each pass, the support
of certain itemsets is measured. These itemsets, called candidate itemsets, are derived
from the tuples in the database and the itemsets contained in the frontier set.

A counter is associated to each itemset. The counter holds the number of transactions
in which the corresponding itemset has appeared. This counter is set to zero when an
itemset is created.

Initially the frontier set consists of only one element, which is an empty set. At the
end of a pass, the support for a candidate is compared with minsupport to determine if
it is a large itemset. At the same time, it is determined if the itemset should be added
to the frontier set for the next pass. The algorithm terminates when the frontier set
becomes empty. The support count for the itemset is preserved when an itemset is
added to the large/frontier set.

In the most straightforward version of the algorithm, every itemset present in any of
the tuples will be measured in one pass, terminating the algorithm in one pass. In the
worst case, this approach will require setting up 2m counters corresponding to all
subsets of the set of items I, where m is the number of items in I. This is, of course,
not only infeasible (m can easily be more than 1000 in a supermarket setting) but also
unnecessary. Indeed, most likely there will be very few large itemsets containing
more than l items, where l is small. Hence, a lot of those 2m combinations will turn out
to be small.

A better approach is to measure in the kth pass only those itemsets that contain exactly
k items. Having measured some items in the kth pass, we need to measure in the
(k+1)th pass only those itemsets that are 1-extensions (an itemset extended by exactly
one item) of large itemsets. If an itemset is small, its 1-extension is also going to be
small. Thus, the frontier set for the next pass is set to candidate itemsets determined
large in the current pass, and only 1-extensions of a frontier itemset are generated and

- 24 -

measured during a pass. This alternative represents another extreme – we will make to
many passes over the database.

2.4.2. Apriori Algorithm

Figure 3 gives the Apriori algorithm (presented in [5]).

L1={large 1-itemsets}
for (k=2;Lk-1≠∅;k++) do begin
 Ck=apriori-gen(Lk-1) // New candidate
 forall transactions t∈D do begin
 Ct=subset(Ck,t) // candidate contained it t
 forall candidates c∈Ct do
 c.count++
 end
 Lk={c∈Ck | c.count ≥ minsupport }
end
Answer=∪kLk

Figure 3 – Algorithm Apriori

k-itemset An itemset having k items
Lk Set of large k-itemsets (those with minimum support). Each member of

this set has two fields:
1. itemset and 2. support count.

Ck Set of candidate k-itemsets (potentially large itemsets). Each member of
this set has two fields:
1. itemset and 2. support count.

Table 1 - Notation

The first pass of the algorithm simply counts items occurrences to determine the large
1-itemsets. A subsequent pass, for example k, consists of two stages. First, the large
itemsets Lk-1 found in the (k-1)th pass, are used to generate the candidate itemsets Ck,
using the apriori-gen function. Second, the database is scanned and the support of
each candidate in Ck is counted. Finally, candidates that their support is below the
minsupport are removed.

The apriori-gen function takes as an argument Lk-1, the set of all large (k-1)-itemsets
and it returns a superset of the set of all large k-itemsets. First, in the join step, we join
Lk-1 with Lk-1, in order to obtain a superset if the final set of candidates Ck. The union
p∪q, where p,q∈Lk-1, is inserted in Ck if p and q share their first k-2 items. Next, in
the prune step, we delete all itemsets c∈Ck such that some (k-1)-subset of c is not in
Lk-1.

As an example, let L3 be {{1,2,3}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3,4}}. After the join
step, C4 will be {{1,2,3,4}, {1,3,4,5}}. The prune step will delete the itemset

- 25 -

{1,3,4,5} because itemset {1,4,5} is not in L3. We will be then left with
C4={{1,2,3,4}}.

2.5. Algorithm for Mining Association Rules

The following is an algorithm for mining association rules in a largest itemset.

1. Set n to one (n=1), create an empty illegal list (denoted by IL)
2. Create a list of sets that contain all possible permutations of items such that:

1. The size of the set is n (the set has n elements),
2. The set may not contain any combination from the illegal list.

3. If the list is empty then stop.
4. For each set, compute its support.
5. It the support is below the threshold TI, put the content of the set on the illegal list.
6. If not then set n to n+1 (n=n+1), and go back to 2.
7. Create threshold α to represent the lowest confidence of an association rule.
8. Create all the association rules such that their confidence is above the threshold α.

As stated before, the problems of mining association rules can be divided into two
sub-problems. The first is to find all combinations of items that have a support above
the minsupport (in our algorithm this is done in 1 to 6). It this stage we can use the
AIS algorithm or the Apriori Algorithm, which we described before. The second is
generating the association rules (7 and 8).

The illegal list (IL) is a list that contains all the permutations that their support is
below the threshold Ti.

The objective of the algorithm is to find the largest possible association set. In order
to find the largest possible association set we need to remove those sets that their
support (frequency) is small. We define small as a support, which is below the
threshold. The threshold (Tn) is found in the following way.

Let minsupport be the smallest frequency, maxsupport be the largest frequency and Tn
be:

1.
()

()

=
>+

=⇒=
MinSupportMaxSupportifMinSupport
MinSupportMaxSupportifMinSupport

Tn
,2max

1,2max
1 1

2.
()()

()

=
>+

=⇒> −

MinSupportMaxSupportifMinSupport
MinSupportMaxSupportifTMinSupport

Tn n
n ,2max

,1,2maxmin
1 1

Then Tn represents a frequency threshold for those items that appear at least T times
in the database. Equations 1 and 2 represent a dynamic change in the threshold.
Basically, it is required that the threshold will not increase as n increases. It is logical
to assume that as n grows, the support of the permutation decreases. To avoid the

- 26 -

situation when the increase in n will yield an increase in T, Equations 1 and 2
developed.

The stopping condition is quite simple. If we increase n by one, and no permutations
are found, we stop the process.

2.6. Example 1

In this example will use the Native algorithm, which the simplest way of generating
itemsets.

Lets take a look at the first 6 stages of the algorithm presented above.

1. Set n to one (n=1), create an empty illegal list (denoted by IL)
2. Create a list of sets that contain all possible permutations of items such that:

1. The size of the set is n (the set has n elements),
2. The set may not contain any combination from the illegal list.

3. If the list is empty then stop.
4. For each set, compute its support.
5. It the support is below the threshold TI, put the content of the set on the illegal list.

The Native algorithm is a simple interpretation of line number 2. In each stage we’ll
generate all possible itemsets, and then compare them with the illegal list. We’re not
looking for a faster, more sophisticated way for generating itemsets.

Assume we have a department store where n customers (denoted by Ci) can buy m
items (denoted by Ij) in the store. The following table summarizes the transactions:

I6I5I4I3I2I1
111C1

11C2
11C3

111C4
1111C5

1C6
111C7

1C8
11C9
111C10

11111C11

Table 2 - Summary of transactions

In the first stage, we have to create a list of itemsets, where each one of the sets has to
contain only one element. The creation of the list should be done in the following
way, for each one of the customers we’ll create a set containing all the products the
customer bought (we’ll refer to that set as products-set), for example customer

- 27 -

number 1 (denoted by C1)4 bought products 1, 4 and 6 (denoted by I1, I4 and I6),
therefore his products-set is {I1,I4,I6}. In the same way, customer number 2’s
products-set is {I2,I5}. After we’ve created the products-set for all the customers,
we’ll take each one of the products-set and extract from it all its subsets, which
contain only one element, those subsets are called “Itemset”. For customer number 1,
which has a products-set of {I1,I4,I6} we’ll get {I1}, {I4} and {I6} as its itemsets. For
customer number, 2 we’ll get {I2} and {I5} as its itemsets. As we can see some of the
customers bought the same products, for example customers 1, 4, 5, 7, 9, 10 and 11 all
bought product number 1, therefore all those customers have product number 1 in
their products-set, hence they all have the {I1} set as their itemset. The following table
summarizes all the itemsets extracted from all the products-sets and their frequency
(which means how many customers have that sub-set in their products-set).

Itemset Frequency
{I1} 7
{I2} 5
{I3} 3
{I4} 7
{I5} 4
{I6} 3

Table 3 - Summary of all itemsets of one element and their frequencies

As we can see, creating all the itemsets of one element results with a list of all
products. Therefore the first stage of mining association rules can be defined as
creating a list of all the products (same as creating all the itemsets of one element) and
counting how many people bought each one of them (their frequency).

Assuming that minsupport is the lowest frequency and maxsupport is the highest
frequency, in our example minsupport is 3 and maxsupport is 7. maxsupport and
maxsupport are used while calculating the threshold. When n=1 (first stage) we’re
using the following formula for finding the threshold:

()
()

=
>+

=
MinSupportMaxSupportifMinSuppor
MinSupportMaxSupportifMinSupport

T
,2max

1,2max
1

Since in our example maxsupport is higher than minsupport, we’ll use
max(2,MinSupport+1), which in our example is max(2,4). As a result we get 4,
therefore, itemsets {I3} and {I6} are put into the illegal list (IL={{I3}, {I6}}).

Now we go to the second stage, in which we create all itemsets that have two
elements. The creation of the itemsets with two elements is done in a similar way to
the creation of the itemsets with one element. From each one of the products-set found
in the first section, we’ll extract all the subsets, which has two elements. For example
customer number 1 has {I1,I4}, {I1,I6} and {I4,I6} as his itemsets. The following table

 4 For the ease of use customers and products will be referred to by their numbers, for example
 customer C1 will be referred to as customer number 1.

- 28 -

summarizes all the itemsets which have two element, extracted from all the
products-sets and their frequency.

Itemset Frequency
{I1,I2} 2
{I1,I3} 2
{I1,I4} 6
{I1,I5} 3
{I2,I4} 2
{I1,I6} 3
{I2,I5} 3
{I3,I4} 2
{I3,I6} 1
{I4,I5} 3
{I4,I6} 2
{I2,I6} 1
{I5,I6} 1

Table 4 - Summary of all itemsets of two elements and their frequencies

As we can see from the table above some of the itemsets have sets from the illegal list
as their subsets. For example, the itemset {I1,I3} has {I3} as it subset, and {I4,I6} has
{I6} as it subset. Any itemset that has a set from the illegal list as its subset should be
removed from the list. The following table is a summary of all the itemsets of two
elements that don’t have any subsets that are in the illegal list.

Itemset Frequency
{I1,I2} 2
{I1,I4} 6
{I1,I5} 3
{I2,I4} 2
{I2,I5} 3
{I4,I5} 3

Table 5 - Summary of all itemsets of two elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

While in the process of mining the association rules, we will need to find for each one
of the stages its own threshold, therefore we will need to find minsupport and
maxsupport each time. The new minsupport and maxsupport for this stage are 2 and 6.
The threshold for stages two and above is calculated using the following formula:

()()
()

=
>+

= −

MinSupportMaxSupportifMinSupport
MinSupportMaxSupportifTMinSupport

T n
n ,2max

,1,2maxmin 1

In our example the threshold for the second stage is 3, therefore itemsets {I1,I2} and
{I2,I4} are put into the illegal list, which is now IL={{I3}, {I6}, {I1,I2}, {I2,I4}}.

- 29 -

On the third stage, we create all itemsets that have three elements. The creation of the
itemsets with three elements is done in the same way we did it before, from each one
of the products-set found in the first section, we’ll extract all the subsets, which has
three elements. The following table summarizes all the itemsets which have three
element, extracted from all the products-sets and their frequency.

Itemset Frequency
{I1,I2,I4} 2
{I1,I2,I5} 2
{I1,I2,I6} 1
{I1,I3,I4} 1
{I1,I3,I6} 1
{I1,I4,I5} 3
{I1,I4,I6} 2
{I1,I5,I6} 1
{I2,I4,I5} 2
{I2,I4,I6} 1
{I4,I5,I6} 1

Table 6 – Summary of all itemsets of three elements and their frequencies

The illegal list contains the following itemsets, which were added to it in the first and
second stages. IL={{I3}, {I6}, {I1,I2}, {I2,I4}}. As we did in the second stage, each
one of the itemsets found (and are listed in the table above), which contains any of the
itemsets of the illegal list as its subset should be removed. We end up with the
following list.

Itemset Frequency
{I1,I4,I5} 3

Table 7 – Summary of all itemsets of three elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

Since we found only one set, this is the last stage and the process is terminated.
According to the algorithm, we should stop if we get an empty list of itemsets. Lets
just continue one more stage in order to show that the next stage results in an empty
list. In order to continue to the next stage, we should find the threshold and add the
necessary itemsets to the illegal list. In this stage minsupport is equal to maxsupport
and is 3. According to the formula for finding the threshold, if minsupport is equal to
maxsupport then the threshold is the highest number of 2 and minsupport, which in
our case is 3. In this case, none of the itemsets found are put into the illegal list. Now
we create all itemsets of four elements, which don’t have any subsets that are in the
illegal list. As we said before there are no such itemsets. There are three itemsets
which have four elements in our example, {I1,I2,I4,I5} which has {I2,I4} as its subsets,
and {I1,I4,I5,I6} and {I2,I4,I5,I6}, which both have {I6} as their subsets, both subsets are
in the illegal list. Therefore stage four results in an empty list of itemsets.

- 30 -

Now we know which items will be in the association rules. If l is the itemset, and a is
a subset of l, then a possible association rule is: a⇒(l-a). In this way, we can generate
the following association rules:

I1⇒I4I5, I4⇒I1I5, I5⇒I1I4, I1I4⇒I5, I1I5⇒I4 and I4I5⇒I1

Assuming that the confidence of each one of the possible association rules can be
found by dividing the frequency of l by the frequency of a, we get the following
results.

Association rule Frequency (l) Frequency (a) Confidence
I1⇒I4I5 3 7 3/7 (0.48)
I4⇒I1I5 3 7 3/7 (0.48)
I5⇒I1I4 3 4 3/4 (0.75)
I1I4⇒I5 3 6 3/6 (0.5)
I1I5⇒I4 3 3 3/3 (1)
I4I5⇒I1 3 3 3/3 (1)

Table 8 – Final set of association rules

Now, after mining all possible association rules, and their confidences, we have to
create a threshold α that represents the lowest confidences of the association rules we
want. If we pick, for example, α=0.75 (which means that there is at least 75% chance
that the association rules really exist), then our final association rules will be I1I5⇒I4

and I4I5⇒I1, which have a confidence of 1 (all the association rules that have
confidence higher than 0.75).

- 31 -

3. Inverse Associations

The previous example might raise the following question. Why do we have blank
entries in the table ? In other words, why the customer did not purchase all the
possible items ? One answer might be that the customer does not need the particular
items in a given time, which is fine. However, another answer might be that some
items cannot be purchased together, or in other words, if one buys item i he/she will
not purchase item j. The algorithm for computing these negative (or inverse) relations
is the subject of this chapter.

3.1. Formal Model

The following is a formal statement of the problem. Let I={i1,i2,...,im} be a set of
attributes over the domain {-1,1}, called items. Let T be a database of transactions, in
which each transaction t is represented as a vector, with t[k]=1 if t bought the item Ik,
and t[k]=(-1) otherwise. There is one tuple in the database for each transaction. Let X
be a set of all items in I. We say that a transaction t satisfies X if for all items Ik in X,
t[k]=1 or t[k]=(-1).

By an inverse association rules, we mean an implication of the form X⇒Y, where X
and Y are sets of some items in I (X⊆I, Y⊆I), and any item Ij which is in X, is not
present in Y, and vice versa (X∩Y=∅). In this approach, missing items are considered
as items that were not bought by the customer, whether they were really not bought or
not. The rule X⇒Y holds in the transaction set T with confidence factor
0≤minconfidence≤1 if c% of the transactions in T that contain X also contain Y.

Given a set of transactions T, the problem of mining inverse association rules is to
generate all inverse association rules that have a certain user-specified constraints of
two different forms:

1. Syntactic Constraints: These constraints involve restrictions on items that can
appear in a rule. For example, we may be interested only in rules that have a
specific item Ix appearing in the consequent (or in the antecedent). A combination
of some constraints is also possible. A very important syntactic constraint is that
an association rule cannot be of the form Ix⇒-Ix, which some mining algorithms
(such as the Apriori algorithm) might produce during the mining procedure.

2. Support Constraints: These constraints concern the number of transactions in T
that support a rule. The support is defined as the percentage of the transactions
that have both items of the antecedent and consequent in them. Support shouldn’t
be confused with confidence. While confidence defines the rules strength, support
is a statistical measurement.

Considering we intend to use the support constraints, the problem of mining the
association rules, can be divided into two sub-problems.

1. Generating all combinations of items that have a certain satisfying support. A
satisfying support is a support, which is above a certain threshold called
minsupport. Items that satisfy the support constraint are called large itemsets, and

- 32 -

all the others are called small itemsets. We can use both syntactic and support
constrains, for example, we might be interested in association rules that have Ix in
the antecedent, and also have a certain support.

2. For a given large itemset L=i1,i2…ik, k>1, generate all rules that use items from
the set L. The antecedent of each rule will be a subset X of L, and the consequent
will be a subset Y of L, such that X,Y≠∅ and Y=L-X, therefore X∩Y=∅ and
X∪Y=L. To generate a rule X⇒Y, with a confidence c, take the support of L and
divide it by the support of X. If the ratio generated, is greater than minconfidence
then the rule is satisfied with the confidence factor c, otherwise it is not.

3.2. Algorithm for Mining Inverse Association Rules

When mining association rules we took under consideration only attributes with
values of one. Attributes with value of zero were not considered while mining the
association rules. When we’re mining inverse association rules, our database contain
transactions that their attributes are either one or minus one. Now we should use all
attributes, whether they contain one or minus one.

We can use the following general algorithm, presented earlier, for mining inverse
association rules.

1. Set n to one (n=1), create an empty illegal list (denoted by IL)
2. Create a list of sets that contain all possible permutations of items such that:

1. The size of the set is n (the set has n elements),
2. The set may not contain any combination from the illegal list.

3. If the list is empty then stop.
4. For each set, compute its support.
5. It the support is below the threshold TI, put the content of the set on the illegal list.
6. If not then set n to n+1 (n=n+1), and go back to 2.
7. Create threshold α to represent the lowest confidence of an association rule.
8. Create all the association rules such that their confidence is above the threshold α.

The following example illustrates the mining of the inverse association rules from the
same data as in the previous example.

3.3. Example 2

We start by stating that if there is an entry somewhere in the database, we mark it as Ij
and if there is no entry, we mark it as –Ij.

I6I5I4I3I2I1
1-11-1-11C1
-11-1-11-1C2
-1-111-1-1C3
1-1-11-11C4
-111-111C5
-1-1-1-11-1C6
-111-1-11C7

- 33 -

I6I5I4I3I2I1
-1-1-1-11-1C8
-1-11-1-11C9
-1-111-11C10
111-111C11

Table 9 – Summary of transactions

In the first stage, we have to create a list of itemsets, where each one of the itemsets
has to contain only one element, as we did when we found the regular association
rules. The creation of the list should be done in the following way, for each one of the
customers we’ll create a set containing all the products the customer bought, and we
add to that set all the products that he didn’t buy, adding a minus sign (“-“) before
them (we will refer to that set as products-set). For example customer number 1
bought products 1, 4 and 6, and he didn’t buy products 2,3, and 5, therefore his
products-set is {I1,I4,I6,-I2,-I3,-I5}. We should notice, that when constructing the
products-sets, all products-sets of all the customers must contain the same number of
elements (which is the number of items in the store), unlike the products-sets found
for the regular association rules. After we’ve created the products-set for all the
customers, we’ll take each one of the products-set and extract from it all its subsets,
which contain only one element. For customer number 1, which has a products-set of
{I1,I4,I6,-I2,-I3,-I5} we’ll get {I1}, {I4}, {I6}, {-I2}, {-I3} and {-I6} as its itemsets. The
following table summarizes all the itemsets extracted from all the products-sets and
their frequencies.

Itemset Frequency
{-I1} 4
{-I2} 6
{-I3} 8
{-I4} 4
{-I5} 7
{-I6} 8
{I1} 7
{I2} 5
{I3} 3
{I4} 7
{I5} 4
{I6} 3

Table 10 – Summary of all itemsets of one element and their frequencies

As we did when we found the regular association rules, a threshold has to be found,
and itemsets with frequency below the threshold, have to be put in the illegal list.
Again, if MinSupport is the lowest frequency and MaxSupport is the highest
frequency, then, in our example, MinSupport is 3 and MaxSupport is 8. We are using
the same formula we used in the first stage of mining the regular association rules, to
find our threshold.

- 34 -

()
()

=
>+

=
MinSupportMaxSupportifMinSuppor
MinSupportMaxSupportifMinSupport

T
,2max

1,2max
1

Since maxsupport is higher than minsupport, we’ll use max(2,MinSupport+1), which
in our example is max(2,4). As a result we get 4, therefore, itemsets {I3} and {I6} are
put into the illegal list (IL={{I3}, {I6}}).

In the second stage, we create all itemsets that have two elements. The creation of the
itemsets with two elements is done in a similar way to the creation of the itemsets
with one element. From each one of the products-set found in the first section, we’ll
extract all the subsets, which has two elements. The following table summarizes all
the itemsets which have two elements, extracted from all the products-sets and their
frequencies.

Itemset Frequency Itemset Frequency Itemset Frequency
{-I1,-I2} 1 {-I1,-I3} 3 {-I1,-I4} 3
{-I1,-I5} 3 {-I1,-I6} 4 {-I2,-I3} 3
{-I2,-I4} 1 {-I2,-I5} 5 {-I2,-I6} 4
{-I3,-I4} 3 {-I3,-I5} 4 {-I3,-I6} 6
{-I4,-I5} 3 {-I4,-I6} 3 {-I5,-I6} 5
{I1,-I2} 5 {I1,-I3} 5 {I1,-I4} 1
{I1,-I5} 4 {I1,-I6} 4 {I1,I2} 2
{I1,I3} 2 {I1,I4} 6 {I1,I5} 3
{I1,I6} 3 {I2,-I1} 3 {I2,-I3} 5
{I2,-I4} 3 {I2,-I5} 2 {I2,-I6} 4
{I2,I4} 2 {I2,I5} 3 {I2,I6} 1
{I3,-I1} 1 {I3,-I2} 3 {I3,-I4} 1
{I3,-I5} 3 {I3,-I6} 2 {I3,I4} 2
{I3,I6} 1 {I4,-I1} 1 {I4,-I2} 5
{I4,-I3} 5 {I4,-I5} 4 {I4,-I6} 5
{I4,I5} 3 {I4,I6} 2 {I5,-I1} 1
{I5,-I2} 1 {I5,-I3} 4 {I5,-I4} 1
{I5,-I6} 3 {I5,I6} 1 {I6,-I2} 2
{I6,-I3} 2 {I6,-I4} 1 {I6,-I5} 2

Table 11 - Summary of all itemsets of two elements and their frequencies

As with the regular association rules, any itemset found, which has an item from the
illegal list as his subset should be removed, and not considered when mining the
inverse association rules. The flowing tables list all itemsets that don’t have any items
from the illegal list as their subsets. These itemsets will be later used for mining the
inverse association rules.

Itemset Frequency Itemset Frequency Itemset Frequency
{-I1,-I2} 1 {-I1,-I3} 3 {-I1,-I4} 3
{-I1,-I5} 3 {-I1,-I6} 4 {-I2,-I3} 3
{-I2,-I4} 1 {-I2,-I5} 5 {-I2,-I6} 4
{-I3,-I4} 3 {-I3,-I5} 4 {-I3,-I6} 6

- 35 -

Itemset Frequency Itemset Frequency Itemset Frequency
{-I4,-I5} 3 {-I4,-I6} 3 {-I5,-I6} 5
{I1,-I2} 5 {I1,-I3} 5 {I1,-I4} 1
{I1,-I5} 4 {I1,-I6} 4 {I1,I2} 2
{I1,I4} 6 {I1,I5} 3 {I2,-I1} 3
{I2,-I3} 5 {I2,-I4} 3 {I2,-I5} 2
{I2,-I6} 4 {I2,I4} 2 {I2,I5} 3
{I4,-I1} 1 {I4,-I2} 5 {I4,-I3} 5
{I4,-I5} 4 {I4,-I6} 5 {I4,I5} 3
{I5,-I1} 1 {I5,-I2} 1 {I5,-I3} 4
{I5,-I4} 1 {I5,-I6} 3

Table 12 - Summary of all itemsets of two elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

Now, we have to decide which new itemsets should be put into the illegal list. For
that, we should use the second formula (which from now, will be used throughout the
entire process).

()()
()

=
>+

= −

MinSupportMaxSupportifMinSupport
MinSupportMaxSupportifTMinSupport

T n
n ,2max

,1,2maxmin 1

minsupport is 1, and maxsupport is 6, therefore the threshold is 2, and {-I1,-I2},
{-I2,-I4}, {I4,-I1}, {I5,-I1}, {I5,-I4}, {I5,-I2} and {I1,-I4} are put in the illegal list. The
illegal list is now: IL={{I3}, {I6}, {-I1,-I2}, {-I2,-I4}, {I4,-I1}, {I5,-I1}, {I5,-I4}, {I5,-I2},
{I1,-I4}}

The third stage involves the generations of all itemsets with three elements. The
following table lists all these itemsets.

Itemset Frequency Itemset Frequency Itemset Frequency
{-I1,-I3,-I4} 3 {-I1,-I3,-I5} 2 {-I1,-I3,-I6} 3
{-I1,-I4,-I5} 2 {-I1,-I4,-I6} 3 {-I1,-I5,-I6} 3
{-I1,I2,-I3} 3 {-I1,I2,-I4} 3 {-I1,I2,-I5} 2
{-I1,I2,-I6} 3 {-I2,-I3,-I5} 2 {-I2,-I3,-I6} 2
{-I2,-I3,I4} 3 {-I2,-I5,-I6} 3 {-I2,I4,-I5} 4
{-I2,I4,-I6} 4 {-I3,-I4,-I5} 2 {-I3,-I4,-I6} 3
{-I3,-I5,-I6} 3 {-I3,I4,-I5} 2 {-I3,I4,-I6} 3
{-I3,I4,I5} 3 {-I3,I5,-I6} 3 {-I4,-I5,-I6} 2
{I1,-I2,-I3} 3 {I1,-I2,-I5} 4 {I1,-I2,-I6} 3
{I1,-I2,I4} 4 {I1,-I3,-I5} 2 {I1,-I3,-I6} 3
{I1,-I3,I4} 5 {I1,-I3,I5} 3 {I1,-I5,-I6} 2
{I1,I2,-I3} 2 {I1,I2,-I6} 1 {I1,I2,I4} 2
{I1,I2,I5} 2 {I1,I4,-I5} 3 {I1,I4,-I6} 4
{I1,I4,I5} 3 {I1,I5,-I6} 2 {I2,-I3,-I4} 3

{I2,-I3,-I5} 2 {I2,-I3,-I6} 4 {I2,-I3,I4} 2
{I2,-I3,I5} 3 {I2,-I4,-I5} 2 {I2,-I4,-I6} 3

- 36 -

Itemset Frequency Itemset Frequency Itemset Frequency
{I2,-I5,-I6} 2 {I2,I4,-I6} 1 {I2,I4,I5} 2
{I2,I5,-I6} 2 {I4,-I5,-I6} 3 {I4,I5,-I6} 2

{-I1,-I2,-I5} 1 {-I1,-I2,-I6} 1 {-I1,-I2,I3} 1
{-I1,-I2,I4} 1 {-I1,-I3,I5} 1 {-I1,-I4,I5} 1
{-I1,I2,I5} 1 {-I1,I3,-I5} 1 {-I1,I3,-I6} 1
{-I1,I3,I4} 1 {-I1,I4,-I5} 1 {-I1,I4,-I6} 1
{-I1,I5,-I6} 1 {-I2,-I3,I5} 1 {-I2,-I3,I6} 1
{-I2,-I4,-I5} 1 {-I2,-I4,I6} 1 {-I2,-I5,I6} 2
{-I2,I3,-I4} 1 {-I2,I3,-I5} 3 {-I2,I3,-I6} 2
{-I2,I3,I4} 2 {-I2,I3,I6} 1 {-I2,I4,I5} 1
{-I2,I4,I6} 1 {-I2,I5,-I6} 1 {-I3,-I4,I5} 1
{-I3,-I5,I6} 1 {-I3,I4,I6} 2 {-I3,I5,I6} 1
{-I4,-I5,I6} 1 {-I4,I5,-I6} 1 {I1,-I2,-I4} 1
{I1,-I2,I3} 2 {I1,-I2,I5} 1 {I1,-I2,I6} 2
{I1,-I3,I6} 2 {I1,-I4,-I5} 1 {I1,-I4,I6} 1
{I1,-I5,I6} 2 {I1,I2,I6} 1 {I1,I3,-I4} 1
{I1,I3,-I5} 2 {I1,I3,-I6} 1 {I1,I3,I4} 1
{I1,I3,I6} 1 {I1,I4,I6} 2 {I1,I5,I6} 1
{I2,-I3,I6} 1 {I2,-I4,I5} 1 {I2,I4,I6} 1
{I2,I5,I6} 1 {I3,-I4,-I5} 1 {I3,-I4,I6} 1

{I3,-I5,-I6} 2 {I3,-I5,I6} 1 {I3,I4,-I5} 2
{I3,I4,-I6} 2 {I4,-I5,I6} 1 {I4,I5,I6} 1

Table 13 - Summary of all itemsets of three elements and their frequencies

Since the illegal list is now IL={{I3}, {I6}, {-I1,-I2}, {-I2,-I4}, {I4,-I1}, {I5,-I1}, {I5,-I4},
{I5,-I2}, {I1,-I4}}, and we are not interested in itemsets that have any itemsets from the
illegal list as their subsets, the list of itemsets with three elements will be reduced to
the following:

Itemset Frequency Itemset Frequency Itemset Frequency
{-I1,-I3,-I4} 3 {-I1,-I3,-I5} 2 {-I1,-I3,-I6} 3
{-I1,-I4,-I5} 2 {-I1,-I4,-I6} 3 {-I1,-I5,-I6} 3
{-I1,I2,-I3} 3 {-I1,I2,-I4} 3 {-I1,I2,-I5} 2
{-I1,I2,-I6} 3 {-I2,-I3,-I5} 2 {-I2,-I3,-I6} 2
{-I2,-I3,I4} 3 {-I2,-I5,-I6} 3 {-I2,I4,-I5} 4
{-I2,I4,-I6} 4 {-I3,-I4,-I5} 2 {-I3,-I4,-I6} 3
{-I3,-I5,-I6} 3 {-I3,I4,-I5} 2 {-I3,I4,-I6} 3
{-I3,I4,I5} 3 {-I3,I5,-I6} 3 {-I4,-I5,-I6} 2
{I1,-I2,-I3} 3 {I1,-I2,-I5} 4 {I1,-I2,-I6} 3
{I1,-I2,I4} 4 {I1,-I3,-I5} 2 {I1,-I3,-I6} 3
{I1,-I3,I4} 5 {I1,-I3,I5} 3 {I1,-I5,-I6} 2
{I1,I2,-I3} 2 {I1,I2,-I6} 1 {I1,I2,I4} 2
{I1,I2,I5} 2 {I1,I4,-I5} 3 {I1,I4,-I6} 4
{I1,I4,I5} 3 {I1,I5,-I6} 2 {I2,-I3,-I4} 3

{I2,-I3,-I5} 2 {I2,-I3,-I6} 4 {I2,-I3,I4} 2

- 37 -

Itemset Frequency Itemset Frequency Itemset Frequency
{I2,-I3,I5} 3 {I2,-I4,-I5} 2 {I2,-I4,-I6} 3
{I2,-I5,-I6} 2 {I2,I4,-I6} 1 {I2,I4,I5} 2
{I2,I5,-I6} 2 {I4,-I5,-I6} 3 {I4,I5,-I6} 2

Table 14 - Summary of all itemsets of three elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

Now we calculate the threshold, in order to decide which itemsets we should put into
the illegal list. minsupport is 1 and maxsupport is 5, calculating the threshold results
with a threshold of 2. Therefore {I1,I2,-I6} and {I2,I4,-I6} are put into the illegal list,
which is now: IL={{I3}, {I6}, {-I1,-I2}, {-I2,-I4}, {I4,-I1}, {I5,-I1}, {I5,-I4}, {I5,-I2},
{I1,-I4}, {I1,I2,-I6}, {I2,I4,-I6}}

We continue to the fourth stage, and create all itemsets with four elements, as
presented in the following table.

Itemset Frequency Itemset Frequency Itemset Frequency
{-I1,-I3,-I4,-I5} 2 {-I1,-I3,-I4,-I6} 3 {-I1,-I3,-I5,-I6} 2
{-I1,-I4,-I5,-I6} 2 {-I1,I2,-I3,-I4} 3 {-I1,I2,-I3,-I5} 2
{-I1,I2,-I3,-I6} 3 {-I1,I2,-I4,-I5} 2 {-I1,I2,-I4,-I6} 3
{-I1,I2,-I5,-I6} 2 {-I2,-I3,-I5,-I6} 1 {-I2,-I3,I4,-I5} 2
{-I2,-I3,I4,-I6} 2 {-I2,I4,-I5,-I6} 3 {-I3,-I4,-I5,-I6} 2
{-I3,I4,-I5,-I6} 1 {-I3,I4,I5,-I6} 2 {I1,-I2,-I3,-I5} 2
{I1,-I2,-I3,-I6} 2 {I1,-I2,-I3,I4} 3 {I1,-I2,-I5,-I6} 2
{I1,-I2,I4,-I5} 3 {I1,-I2,I4,-I6} 3 {I1,-I3,-I5,-I6} 1
{I1,-I3,I4,-I5} 2 {I1,-I3,I4,-I6} 3 {I1,-I3,I4,I5} 3
{I1,-I3,I5,-I6} 2 {I1,I2,-I3,I4} 2 {I1,I2,-I3,I5} 2
{I1,I2,I4,I5} 2 {I1,I4,-I5,-I6} 2 {I1,I4,I5,-I6} 2

{I2,-I3,-I4,-I5} 2 {I2,-I3,-I4,-I6} 3 {I2,-I3,-I5,-I6} 2
{I2,-I3,I4,I5} 2 {I2,-I3,I5,-I6} 2 {I2,-I4,-I5,-I6} 2

{-I1,-I2,-I5,-I6} 1 {-I1,-I2,I3,-I5} 1 {-I1,-I2,I3,-I6} 1
{-I1,-I2,I3,I4} 1 {-I1,-I2,I4,-I5} 1 {-I1,-I2,I4,-I6} 1
{-I1,-I3,-I4,I5} 1 {-I1,-I3,I5,-I6} 1 {-I1,-I4,I5,-I6} 1
{-I1,I2,-I3,I5} 1 {-I1,I2,-I4,I5} 1 {-I1,I2,I5,-I6} 1
{-I1,I3,-I5,-I6} 1 {-I1,I3,I4,-I5} 1 {-I1,I3,I4,-I6} 1
{-I1,I4,-I5,-I6} 1 {-I2,-I3,-I5,I6} 1 {-I2,-I3,I4,I5} 1
{-I2,-I3,I4,I6} 1 {-I2,-I3,I5,-I6} 1 {-I2,-I4,-I5,I6} 1
{-I2,I3,-I4,-I5} 1 {-I2,I3,-I4,I6} 1 {-I2,I3,-I5,-I6} 2
{-I2,I3,-I5,I6} 1 {-I2,I3,I4,-I5} 2 {-I2,I3,I4,-I6} 2
{-I2,I4,-I5,I6} 1 {-I2,I4,I5,-I6} 1 {-I3,-I4,I5,-I6} 1
{-I3,I4,-I5,I6} 1 {-I3,I4,I5,I6} 1 {I1,-I2,-I3,I5} 1
{I1,-I2,-I3,I6} 1 {I1,-I2,-I4,-I5} 1 {I1,-I2,-I4,I6} 1
{I1,-I2,-I5,I5} 2 {I1,-I2,I3,-I4} 1 {I1,-I2,I3,-I5} 2
{I1,-I2,I3,-I5} 1 {I1,-I2,I3,I4} 1 {I1,-I2,I3,I5} 1
{I1,-I2,I4,I5} 1 {I1,-I2,I4,I5} 1 {I1,-I2,I5,-I5} 1
{I1,-I3,-I5,I5} 1 {I1,-I3,I4,I5} 2 {I1,-I3,I5,I5} 1

- 38 -

Itemset Frequency Itemset Frequency Itemset Frequency
{I1,-I4,-I5,I5} 1 {I1,I2,-I3,-I5} 1 {I1,I2,-I3,I5} 1
{I1,I2,I4,-I5} 1 {I1,I2,I4,I5} 1 {I1,I2,I5,-I5} 1
{I1,I2,I5,I5} 1 {I1,I3,-I4,-I5} 1 {I1,I3,-I4,I5} 1

{I1,I3,-I5,-I5} 1 {I1,I3,-I5,I5} 1 {I1,I3,I4,-I5} 1
{I1,I3,I4,-I5} 1 {I1,I4,-I5,I5} 1 {I1,I4,I5,I5} 1
{I2,-I3,-I4,I5} 1 {I2,-I3,I4,-I5} 1 {I2,-I3,I4,I5} 1
{I2,-I3,I5,I5} 1 {I2,-I4,I5,-I5} 1 {I2,I4,I5,-I5} 1
{I2,I4,I5,I5} 1 {I3,-I4,-I5,I5} 1 {I3,I4,-I5,-I5} 2

Table 15 - Summary of all itemsets of four elements and their frequencies

Again, removing itemsets that have elements from the illegal list as their subsets,
reduce the list of itemsets with four elements to the following.

Itemset Frequency Itemset Frequency Itemset Frequency
{-I1,-I3,-I4,-I5} 2 {-I1,-I3,-I4,-I6} 3 {-I1,-I3,-I5,-I6} 2
{-I1,-I4,-I5,-I6} 2 {-I1,I2,-I3,-I4} 3 {-I1,I2,-I3,-I5} 2
{-I1,I2,-I3,-I6} 3 {-I1,I2,-I4,-I5} 2 {-I1,I2,-I4,-I6} 3
{-I1,I2,-I5,-I6} 2 {-I2,-I3,-I5,-I6} 1 {-I2,-I3,I4,-I5} 2
{-I2,-I3,I4,-I6} 2 {-I2,I4,-I5,-I6} 3 {-I3,-I4,-I5,-I6} 2
{-I3,I4,-I5,-I6} 1 {-I3,I4,I5,-I6} 2 {I1,-I2,-I3,-I5} 2
{I1,-I2,-I3,-I6} 2 {I1,-I2,-I3,I4} 3 {I1,-I2,-I5,-I6} 2
{I1,-I2,I4,-I5} 3 {I1,-I2,I4,-I6} 3 {I1,-I3,-I5,-I6} 1
{I1,-I3,I4,-I5} 2 {I1,-I3,I4,-I6} 3 {I1,-I3,I4,I5} 3
{I1,-I3,I5,-I6} 2 {I1,I2,-I3,I4} 2 {I1,I2,-I3,I5} 2
{I1,I2,I4,I5} 2 {I1,I4,-I5,-I6} 2 {I1,I4,I5,-I6} 2

{I2,-I3,-I4,-I5} 2 {I2,-I3,-I4,-I6} 3 {I2,-I3,-I5,-I6} 2
{I2,-I3,I4,I5} 2 {I2,-I3,I5,-I6} 2 {I2,-I4,-I5,-I6} 2

Table 16 - Summary of all itemsets of four elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

We now calculate the new threshold, to decide which of the new itemsets will be put
in the illegal list. minsupport is 1 and maxsupport is 3, therefore the threshold is 2.
Hence {-I3,I4,-I5,-I6}, {-I2,-I3,-I5,-I6} and {I1,-I3,-I5,-I6} are put into the illegal list,
which is now: IL={{I3}, {I6}, {-I1,-I2}, {-I2,-I4}, {I4,-I1}, {I5,-I1}, {I5,-I4}, {I5,-I2},
{I1,-I4}, {I1,I2,-I6}, {I2,I4,-I6}, {-I3,I4,-I5,-I6}, {-I2,-I3,-I5,-I6}, {I1,-I3,-I5,-I6}}

In the fifth stage, we extract all itemsets with five elements.

Itemset Frequency Itemset Frequency
{-I1,-I2,I3,-I5,-I6} 1 {-I1,-I2,I3,I4,-I5} 1
{-I1,-I2,I3,I4,-I6} 1 {-I,-I2,I4,-I5,-I6} 1

{-I1,-I3,-I4,-I5,-I6} 2 {-I1,-I3,-I4,I5,-I6} 1
{-I1,I2,-I3,-I4,-I5} 2 {-I1,I2,-I3,-I4,-I6} 3
{-I1,I2,-I3,-I4,I5} 1 {-I1,I2,-I3,-I5,-I6} 2
{-I1,I2,-I3,I5,-I6} 1 {-I1,I2,-I4,-I5,-I6} 2

- 39 -

Itemset Frequency Itemset Frequency
{-I1,I2,-I4,I5,-I6} 1 {-I1,I3,I4,-I5,-I6} 1
{-I2,-I3,I4,-I5,-I6} 1 {-I2,-I3,I4,-I5,I6} 1
{-I2,-I3,I4,I5,-I6} 1 {-I2,I3,-I4,-I5,I6} 1
{-I2,I3,I4,-I5,-I6} 2 {I1,-I2,-I3,-I5,-I6} 1
{I1,-I2,-I3,-I5,I6} 1 {I1,-I2,-I3,I4,-I5} 2
{I1,-I2,-I3,I4,-I6} 2 {I1,-I2,-I3,I4,I5} 1
{I1,-I2,-I3,I4,I6} 1 {I1,-I2,-I3,I5,-I6} 1
{I1,-I2,-I4,-I5,I6} 1 {I1,-I2,I3,-I4,-I5} 1
{I1,-I2,I3,-I4,I6} 1 {I1,-I2,I3,-I5,-I6} 1
{I1,-I2,I3,-I5,I6} 1 {I1,-I2,I3,I4,-I5} 1
{I1,-I2,I3,I4,-I6} 1 {I1,-I2,I4,-I5,-I6} 2
{I1,-I2,I4,-I5,I6} 1 {I1,-I2,I4,I5,-I6} 1
{I1,-I3,I4,-I5,-I6} 1 {I1,-I3,I4,-I5,I6} 1
{I1,-I3,I4,I5,-I6} 2 {I1,-I3,I4,I5,I6} 1
{I1,I2,-I3,I4,-I6} 1 {I1,I2,-I3,I4,I5} 2
{I1,I2,-I3,I4,I6} 1 {I1,I2,-I3,I5,-I6} 1
{I1,I2,-I3,I5,I6} 1 {I1,I2,I4,I5,-I6} 1
{I1,I2,I4,I5,I6} 1 {I1,I3,-I4,-I5,I6} 1

{I1,I3,I4,-I5,-I6} 1 {I2,-I3,-I4,-I5,-I6} 2
{I2,-I3,-I4,I5,-I6} 1 {I2,-I3,I4,I5,-I6} 1
{I2,-I3,I4,I5,I6} 1

Table 17 - Summary of all itemsets of five elements and their frequencies

As with the previous stages, we remove itemsets with elements of the illegal list as
their subsets, resulting with the following list.

Itemset Frequency Itemset Frequency
{-I1,-I3,-I4,-I5,-I6} 2 {-I1,I2,-I3,-I4,-I5} 2
{-I1,I2,-I3,-I4,-I6} 3 {-I1,I2,-I3,-I5,-I6} 2
{-I1,I2,-I4,-I5,-I6} 2 {I1,-I2,-I3,I4,-I5} 2
{I1,-I2,-I3,I4,-I6} 2 {I1,-I2,I4,-I5,-I6} 2
{I1,-I3,I4,I5,-I6} 2 {I1,I2,-I3,I4,I5} 2

{I2,-I3,-I4,-I5,-I6} 2

Table 18 - Summary of all itemsets of five elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

A new threshold has to found in order to decide which itemsets will be put into the
illegal list. minsupport is 2 and maxsupport is 3, therefore the threshold is 2. As a
result we don’t put new itemsets into the illegal list (since we don’t have any itemset
with a frequency of 1), which remains: IL={{I3}, {I6}, {-I1,-I2}, {-I2,-I4}, {I4,-I1},
{I5,-I1}, {I5,-I4}, {I5,-I2}, {I1,-I4}, {I1,I2,-I6}, {I2,I4,-I6}, {-I3,I4,-I5,-I6}, {-I2,-I3,-I5,-I6},
{I1,-I3,-I5,-I6}}

We continue to the sixth stage, and extract all itemsets with six elements.

- 40 -

Itemset Frequency
{-I1,-I2,I3,I4,-I5,-I6} 1
{I1,I2,-I3,I4,I5,I6} 1
{I1,I2,-I3,I4,I5,-I6} 1

{-I1,I2,-I3,-I4,I5,-I6} 1
{-I1,I2,-I3,-I4,-I5,-I6} 2
{I1,-I2,-I3,I4,-I5,I6} 1
{I1,-I2,-I3,I4,I5,-I6} 1
{I1,-I2,-I3,I4,-I5,-I6} 1
{I1,-I2,I3,-I4,-I5,I6} 1
{I1,-I2,I3,I4,-I5,-I6} 1

Table 19 - Summary of all itemsets of six elements and their frequencies

We then remove all the itemsets that have as a subset an element from the illegal list,
resulting with the following list.

Itemset Frequency
{-I1,I2,-I3,-I4,-I5,-I6} 2

Table 20 - Summary of all itemsets of six elements and their frequencies, not including itemsets
that have subsets that are in the illegal list

We now have to decide which itemsets should be put into the illegal list. minsupport
is 2 and maxsupport is 2, therefore the threshold is 2, and no new itemsets are being
put into the illegal list, which remains: IL={{I3}, {I6}, {-I1,-I2}, {-I2,-I4}, {I4,-I1},
{I5,-I1}, {I5,-I4}, {I5,-I2}, {I1,-I4}, {I1,I2,-I6}, {I2,I4,-I6}, {-I3,I4,-I5,-I6}, {-I2,-I3,-I5,-I6},
{I1,-I3,-I5,-I6}}.

While mining inverse association rules, we use all the possible products that in the
store to create the product-sets, therefore, in our example the product-sets contain six
elements. Since in this stage, we found itemsets with six elements, the next stage will
result no itemsets, since we have no product-sets with seven elements. In that case,
this will be the last stage, before the creation of the inverse association rules.

Now we know which items will be in the inverse association rules. Again, as with the
regular association rules, if l is the itemset, and a is a subset of l, then a possible
association rule is: a⇒(l-a). Assuming that the confidence of each one of the possible
association rules can be found by dividing the frequency of l by the frequency of a,
we get the following results.

Association rule Frequency (l) Frequency (a) Confidence
-I1⇒I2,-I3,-I4,-I5,-I6 2 4 2/4 (0.5)
I2⇒-I1,-I3,-I4,-I5,-I6 2 6 2/6 (0.34)
-I3⇒-I1,I2,-I4,-I5,-I6 2 8 2/8 (0.25)
-I4⇒-I1,I2,-I3,-I5,-I6 2 4 2/4 (0.5)
-I5⇒-I1,I2,-I3,-I4,-I6 2 7 2/7 (0.29)
-I6⇒-I1,I2,-I3,-I4,-I5 2 8 2/8 (0.25)

- 41 -

Association rule Frequency (l) Frequency (a) Confidence
-I1,I2⇒-I3,-I4,-I5,-I6 2 3 2/3 (0.67)
-I1,-I3⇒I2,-I4,-I5,-I6 2 3 2/3 (0.67)
-I1,-I4⇒I2,-I3,-I5,-I6 2 3 2/3 (0.67)
-I1,-I5⇒I2,-I3,-I4,-I6 2 3 2/3 (0.67)
-I1,-I6⇒I2,-I3,-I4,-I5 2 4 2/4 (0.5)
I2,-I3⇒-I1,-I4,-I5,-I6 2 5 2/5 (0.4)
I2,-I4⇒-I1,-I3,-I5,-I6 2 3 2/3 (0.67)
I2,-I5⇒-I1,-I3,-I4,-I6 2 2 2/2 (1)
I2,-I6⇒-I1,-I3,-I4,-I5 2 4 2/4 (0.5)
-I3,-I4⇒-I1,I2,-I5,-I6 2 3 2/3 (0.67)
-I3,-I5⇒-I1,I2,-I4,-I6 2 4 2/4 (0.5)
-I3,-I6⇒-I1,I2,-I4,-I5 2 6 2/6 (0.34)
-I4,-I5⇒-I1,I2,-I3,-I6 2 3 2/3 (0.67)
-I4,-I6⇒-I1,I2,-I3,-I5 2 3 2/3 (0.67)
-I5,-I6⇒-I1,I2,-I3,-I4 2 5 2/5 (0.4)
-I1,I2,-I3⇒-I4,-I5,-I6 2 3 2/3 (0.67)
-I1,I2,-I4⇒-I3,-I5,-I6 2 3 2/3 (0.67)
-I1,I2,-I5⇒-I3,-I4,-I6 2 2 2/2 (1)
-I1,I2,-I6⇒-I3,-I4,-I5 2 3 2/3 (0.67)
-I1,-I3,-I4⇒I2,-I5,-I6 2 3 2/3 (0.67)
-I1,-I3,-I5⇒I2,-I4,-I6 2 2 2/2 (1)
-I1,-I3,-I6⇒I2,-I4,-I5 2 3 2/3 (0.67)
-I1,-I4,-I5⇒I2,-I3,-I6 2 2 2/2 (1)
-I1,-I4,-I6⇒I2,-I3,-I5 2 3 2/3 (0.67)
-I1,-I5,-I6⇒I2,-I3,-I4 2 3 2/3 (0.67)
I2,-I3,-I4⇒-I1,-I5,-I6 2 3 2/3 (0.67)
I2,-I3,-I5⇒-I1,-I4,-I6 2 2 2/2 (1)
I2,-I3,-I6⇒-I1,-I4,-I5 2 4 2/4 (0.5)
I2,-I4,-I5⇒-I1,-I3,-I6 2 2 2/2 (1)
I2,-I4,-I6⇒-I1,-I3,-I5 2 3 2/3 (0.67)
I2,-I5,-I6⇒-I1,-I3,-I4 2 2 2/2 (1)
-I3,-I4,-I5⇒-I1,I2,-I6 2 2 2/2 (1)
-I3,-I4,-I6⇒-I1,I2,-I5 2 3 2/3 (0.67)
-I3,-I5,-I6⇒-I1,I2,-I4 2 3 2/3 (0.67)
-I4,-I5,-I6⇒-I1,I2,-I3 2 2 2/2 (1)
-I1,I2,-I3,-I4⇒-I5,-I6 2 3 2/3 (0.67)
-I1,I2,-I3,-I5⇒-I4,-I6 2 2 2/2 (1)
-I1,I2,-I3,-I6⇒-I4,-I5 2 3 2/3 (0.67)
-I1,I2,-I4,-I5⇒-I3,-I6 2 2 2/2 (1)
-I1,I2,-I4,-I6⇒-I3,-I5 2 3 2/3 (0.67)
-I1,I2,-I5,-I6⇒-I3,-I4 2 2 2/2 (1)
-I1,-I3,-I4,-I5⇒I2,-I6 2 2 2/2 (1)
-I1,-I3,-I4,-I6⇒I2,-I5 2 3 2/3 (0.67)

- 42 -

Association rule Frequency (l) Frequency (a) Confidence
-I1,-I3,-I5,-I6⇒I2,-I4 2 2 2/2 (1)
-I1,-I4,-I5,-I6⇒I2,-I3 2 2 2/2 (1)
I2,-I3,-I4,-I5⇒-I1,-I6 2 2 2/2 (1)
I2,-I3,-I4,-I6⇒-I1,-I5 2 3 2/3 (0.67)
I2,-I3,-I5,-I6⇒-I1,-I4 2 2 2/2 (1)
I2,-I4,-I5,-I6⇒-I1,-I3 2 2 2/2 (1)
-I3,-I4,-I5,-I6⇒-I1,I2 2 2 2/2 (1)
-I1,I2,-I3,-I4,-I5⇒-I6 2 2 2/2 (1)
-I1,I2,-I3,-I4,-I6⇒-I5 2 3 2/3 (0.67)
-I1,I2,-I3,-I5,-I6⇒-I4 2 2 2/2 (1)
-I1,I2,-I4,-I5,-I6⇒-I3 2 2 2/2 (1)
-I1,-I3,-I4,-I5,-I6⇒I2 2 2 2/2 (1)
I2,-I3,-I4,-I5,-I6⇒-I1 2 2 2/2 (1)

Table 21 – Final set of inverse association rules

Now, after mining all possible association rules, and their confidences, we have to
create a threshold α that represents the lowest confidences of the association rules we
want. If we pick, for example, α=0.75 (which means that there is at least 75% chance
that the association rules really exist), then our final association rules will be:
I2,-I5⇒-I1,-I3,-I4,-I6, -I1,I2,-I5⇒-I3,-I4,-I6, -I1,-I3,-I5⇒I2,-I4,-I6, -I1,-I4,-I5⇒I2,-I3,-I6,
I2,-I3,-I5⇒-I1,-I4,-I6, I2,-I4,-I5⇒-I1,-I3,-I6, I2,-I5,-I6⇒-I1,-I3,-I4, -I3,-I4,-I5⇒-I1,I2,-I6,
-I4,-I5,-I6⇒-I1,I2,-I3, -I1,I2,-I3,-I5⇒-I4,-I6, -I1,I2,-I4,-I5⇒-I3,-I6, -I1,I2,-I5,-I6⇒-I3,-I4,
-I1,-I3,-I4,-I5⇒I2,-I6, -I1,-I3,-I5,-I6⇒I2,-I4, -I1,-I4,-I5,-I6⇒I2,-I3, I2,-I3,-I4,-I5⇒-I1,-I6,
I2,-I3,-I5,-I6⇒-I1,-I4, I2,-I4,-I5,-I6⇒-I1,-I3, -I3,-I4,-I5,-I6⇒-I1,I2, -I1,I2,-I3,-I4,-I5⇒-I6,
-I1,I2,-I3,-I5,-I6⇒-I4, -I1,I2,-I4,-I5,-I6⇒-I3, -I1,-I3,-I4,-I5,-I6⇒I2 and I2,-I3,-I4,-I5,-I6⇒-I1,
which have a confidence of 1 (all the association rules that have confidence equal to
and higher than 0.75).

- 43 -

4. Implementation of the Algorithms

This section describes the “Association Rules Miner” program, in terms of screens,
and the way the user can and should operate the program. We can refer to this section
as the “Association Rules Miner” user guide.

While showing and explaining the “Association Rules Miner” program, we’ll use as
an example the same data as presented in the department store example (examples 1
and 2).

4.1. Data Insertion

When starting the program, we’ll see the following screen.

Figure 4 – The main form of the program, the Data Table

This is the main screen of the program in which the data is stored.

Before starting mining association rules, it is essential to enter the correct data into
the table located on the main screen. Each one of the table’s cells must contain data,
with values of either 1 or 0.

When starting the program the table contains no data, and the entire table’s cells are
empty. Trying to start mining in this stage will bring the following error message:
“The table doesn’t contain information, or the information entered isn’t correct”, as
shown in Figure 5.

- 44 -

Figure 5 – Main screen error message

Filling the table with data can be done in several ways.

1. Using the mouse or keyboard to navigate to the desired cell, and then filling it
with the value of 0 or 1, by pressing the “0” key or the “1” key, pressing any other
keys results with no cell change. This way it is possible to fill every one of the
table’s cells with values of 0 or 1.

2. The data table can be saved by clicking the “Save” button, or choosing the menu
File|Save command, and supplying a name by which the table will be saved. We
can fill our data table, by loading such a saved file. This can be done by clicking
the “Load” button, or choosing the File|Load menu command and then entering
the name of the saved table (the file name).

3. A third way of filling our data table is to choose the File|Fill with random values
menu command. This fills the table with random values of 0 and 1. We added this
option in order to make it possible to test the application more easily with
different data tables.

4.2. Resizing the Data Table

When starting the application, by default we get an empty 2 by 2 data table. Such data
table, obviously can’t represent any real-life information. Therefore, it is possible to
change the number of columns and rows of the data table by using the “Resize table”
dialogue.

Clicking the “Resize table” button, or using the File|Resize table menu command,
brings the following dialogue.

- 45 -

Figure 6 – The “Resize table” dialogue

As we can see, the “Resize table” dialogue is divided into two sections. The first
section (the upper one), is in charge of the table’s size. The second one (the lower
one) is in charge of the columns’ and rows’ names.

By default, when adding new rows or columns, the new columns will be named “I”
adding the number of the column, and the new rows will be named “C” adding the
number of the row. We can change the name of the columns and rows by choosing
each column and row we want to rename and entering the new name. After such a
renaming, we must press the “OK” button, otherwise the changes we made will be
lost.

The number of columns can vary from 2 to 30, and the number of rows can vary from
2 to 1,000,000, which can form a data table of 7103 ⋅ cells.

4.3. Algorithms

The “Association Rules Minder” program implements two mining algorithms, both of
them are able to mine regular and inverse association rules. The first algorithm is the
“Native” algorithm. The “Native” algorithm uses the straightforward approach for
generating the itemsets. In each stage, it simply generates all possible itemsets, and
then compares them to the Illegal List. The second algorithm is the Apriori algorithm.
When choosing the Apriori algorithm, the “Association Rules Miner” program uses
the Apriori algorithms for generating the itemsets.

Choosing the mining algorithm is done by selecting either the Algorithm|Native menu
for the “Native” algorithm. Alternatively, selecting the Algorithm|Apriori menu
causes the “Association Rules Miner” to use the Apriori algorithm.

By default, the “Association Rules Miner” uses the Apriori algorithm. We can see
which algorithm is currently being used by the program by clicking on the Algorithm
menu. Clicking on the Algorithm menu pops up the algorithm menu, on that menu the
currently used algorithm is marked with “v”, which appears beside it.

4.4. The Mining Procedure

After we have chosen the algorithm we want to use, and filled the data table with the
appropriate data, we can start mining association and inverse association rules.

There are two optional ways for the mining procedure. The first one is the manual
procedure, which means that the program shows every stage of the mining algorithm,
waiting for the user to choose his action, which can be one of the following: Stop – in
order to stop the mining procedure, Next – in order to proceed to the next stage or
Previous – in order to return to the previous stage. An alternative way is using the
automatic mining option. Using the automatic mining option causes the program to
automatically proceed to the next stage whenever the manual procedure was suppose
to wait for the users reaction.

- 46 -

Suppose we want to use the “Association Rules Miner” program to look for the
association rules we found in example 1. The first stage will be filling the data table
with the information. The main screen, then, should look like this:

Figure 7 - The main screen when the data table contain the information used in example 1

After filling the data table, we can proceed with the mining procedure. As we said we
can choose between manual and automatic procedures for both the regular and inverse
association rules mining procedures. The manual operation can be started by pressing
the “Association rules” button, or choosing the Association|Find association rules
menu command for regular association rules mining. In addition, by pressing the
“Inverse association rules” button, or choosing the Association|Find inverse
association rules menu command for inverse association rules mining. The automatic
mining operation can be started only by choosing the Association|Find association
rules automatically menu command for regular association rules mining, or by
choosing the Association|Find inverse association rules automatically menu command
for inverse association rules mining. Automatic operation is not available via buttons.

Suppose we choose to use the manual mining operation. After pressing the
“Association rules” button, or choosing the Association|Find association rules menu
command, the program starts mining association rules. After it has finished the first
stage of the mining operation, the program would show the following screen:

- 47 -

Figure 8 - The first stage of the mining operation

This screen shows all the itemsets of one element found during the mining operation.
It also shows all the itemsets that the illegal list contains. Since this screen will follow
us during the entire mining operation, it provides the following options. Stop – in
order to stop the mining operation and return to the main screen. Next – in order to
proceed to the next stage, and Previous – in order to return to the previous stage. In
this stage, the first stage, pressing the “Previous stage” button results with the
following message: This is the first stage, there was on other stage before this one !

Figure 9 - First stage Previous option error message

Pressing the “Next stage” button, the program will continue to the next stage.
Eventually the program will show the following screen.

- 48 -

Figure 10 - The second stage of the mining operation

Again, we can choose from the Stop, Previous stage and Next stage options. Pressing
the “Next stage” button, will produce the next screen, which is the last stage of our
example.

- 49 -

Figure 11 - The Third stage of the mining operation

Since this was the last stage of our example, pressing the “Next stage” button again
should generate all the association rules found by the program, as the next figure
shows.

Figure 12 - Final association rules found by the "Association Rules Miner"

After mining all the possible association rules, we can let the program know what is
our desired confidence, by entering the confidence in the edit box. Automatically, as
we type, the program displays all association rules with a confidence higher than or
equal to the one we entered.

- 50 -

Figure 13 - Specifying a desired confidence

Some options are available for the mining procedure. By default the program sorts the
Illegal List and the Itemsets list in every stage of the mining procedure. It is possible
to disable (and enable) each one of those sorts in order to increase the mining
procedure (sorting simply takes time, and it is not an essential part of the algorithms).
From the Sorts menu, it is possible to disable or enable the sort of the Itemsets, by
choosing the Sort Itemsets Table commands. This way, we can disable or enable the
sort of the Illegal List, by choosing the Sort Illegal List Table command.

Sorting is also available for the association rules table. It is also possible to disable
and enable the sort of the association rules table, by choosing the Sorts|Sort
Associations Table menu command.

4.5. Reports

The “Association Rules Miner” program can generate a report of the mining
operation. By default a report is generated for each mining operation, but the report
can be disabled or enabled by using the Report|Generate reports menu command.

In order to view a report, the user should use the Reports|Show last report menu
command, which will bring a screen similar to the one shown in Figure 14.

- 51 -

Figure 14 - The report generated while mining association rules

It is possible to print the report using the Reports|Print last report menu command.

4.6. The About Box, and More

As with other program, our program has a help menu.

The help menu provide among other things an About command, which shows the
About dialogue box as shown in Figure 15.

Figure 15 – The about dialogue

- 52 -

Other options available from the Help menu is a link for the association rules miner
home page, which is available from the Help|Association Rules Miner Homepage
menu command. Using this command launches the default browser, and sets it to
show the association rules miner homepage.

Another option is to send an e-mail to the author of the association rules miner. This is
available by using the Help|Send us feedback vial e-mail menu command. This
command launches the default e-mail client setting to send e-mail to us, the authors.

- 53 -

5. The Source Code

We choose Delphi as our development language. Delphi, currently in its 5th version, is
a rapid application development (RAD) tool from Borland International. Delphi uses
Pascal, actually if we want to be correct it uses Object-Pascal as its language.
Object-Pascal is a new version of the well-known programming language Pascal,
which adds the functionality of object oriented programming to Pascal. Object
Pascal’s implementation of the object oriented programming, and the compiler
distributed with Delphi, results in very small and fast applications, which can easily
compete with any C++ applications.

Applications developed with Delphi are small in size and also do not require any
special DLLs (that means that we can distribute our application as a single executable
file).

5.1. DataInuptUnit Unit

unit DataInputUnit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Grids, ComCtrls, ToolWin, ExtCtrls, ImgList, Menus, Sets,ShellAPI,
LinkedList,HashTable;

type
TDataInputForm = class(TForm)

Data: TStringGrid;
MainMenu: TMainMenu;
File1: TMenuItem;
NewMenu: TMenuItem;
Open1: TMenuItem;
Save1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
About1: TMenuItem;

- 54 -

OpenDialog1: TOpenDialog;
SaveDialog1: TSaveDialog;
Associations: TMenuItem;
Findassociationrules1: TMenuItem;
Findinverseassociationrules1: TMenuItem;
StatusBar1: TStatusBar;
ImageList1: TImageList;
N2: TMenuItem;
Resizetable1: TMenuItem;
Findassociationrulesautomaticly1: TMenuItem;
Findinverseassociationrulesautomaticly1: TMenuItem;
Sorts1: TMenuItem;
SortItemsetsTable1: TMenuItem;
SortIllegalListTable1: TMenuItem;
SortAssociationsTable1: TMenuItem;
AssociationRulesMinerHomepage1: TMenuItem;
SendusfeadbackviaEMail1: TMenuItem;
N3: TMenuItem;
About2: TMenuItem;
Reports1: TMenuItem;
Showlastreport1: TMenuItem;
Generatereports1: TMenuItem;
Printlastreport1: TMenuItem;
ImageList2: TImageList;
Algorithm1: TMenuItem;
Native1: TMenuItem;
Apriori1: TMenuItem;
Timer1: TTimer;
ControlBar: TControlBar;
ToolBarMenu: TToolBar;
ToolBarButtons: TToolBar;
NewTableButton: TToolButton;
LoadTableButton: TToolButton;
SaveTableButton: TToolButton;
ResizeTableButton: TToolButton;
ToolButton7: TToolButton;
AssociationRulesButton: TToolButton;
InverseAssociationRulesButton: TToolButton;
ToolButton10: TToolButton;
AboutBoxButton: TToolButton;
ControlBarPopupMenu: TPopupMenu;
MainMenu2: TMenuItem;
ToolBar1: TMenuItem;
N4: TMenuItem;
Fillwithrandomvalues1: TMenuItem;
procedure LoadTableClick(Sender: TObject);
procedure SaveTableClick(Sender: TObject);
procedure AssociationRulesButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Exit1Click(Sender: TObject);
procedure ResizeTableClick(Sender: TObject);
procedure InverseAssociationRulesButtonClick(Sender: TObject);
procedure Findassociationrulesautomaticly1Click(Sender: TObject);
procedure Findinverseassociationrulesautomaticly1Click(

Sender: TObject);
procedure NewTableButtonClick(Sender: TObject);
procedure SortItemsetsTable1Click(Sender: TObject);
procedure SortIllegalListTable1Click(Sender: TObject);
procedure SortAssociationsTable1Click(Sender: TObject);
procedure DataKeyPress(Sender: TObject; var Key: Char);
procedure AboutBoxButtonClick(Sender: TObject);
procedure AssociationRulesMinerHomepage1Click(Sender: TObject);
procedure SendusfeadbackviaEMail1Click(Sender: TObject);
procedure Showlastreport1Click(Sender: TObject);
procedure Generatereports1Click(Sender: TObject);
procedure Apriori1Click(Sender: TObject);
procedure Native1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Timer1Timer(Sender: TObject);
procedure MainMenu2Click(Sender: TObject);
procedure ControlBarPopupMenuPopup(Sender: TObject);
procedure ToolBar1Click(Sender: TObject);
procedure Fillwithrandomvalues1Click(Sender: TObject);

private

- 55 -

{ Private declarations }
public

{ Public declarations }
end;

var
DataInputForm : TDataInputForm;
Threshold : integer;
n : Integer;
FindInverse : Boolean;
FindAuto : Boolean;
IllegalList : TLinkedSet;
ItemSets : THashTable;

implementation

uses AprioriUnit, AboutUnit, ResizeTableUnit, ReportUnit,NativeUnit;

{$R *.DFM}

Clicking the “Load” button, or choosing the File|Load menu, brings the open file
dialogue, from which we choose which data file we want to load. After choosing the
file, the file is being loaded to the main memory. The LoadTableClick is handling
the load operation. The data file is a text file, in which the first two line are storing the
data size, as it is represented as a two dimensional table.
procedure TDataInputForm.LoadTableClick(Sender: TObject); // Loads a saved data table
var

F : TextFile;
i,j : Integer;
s : String;

begin
Application.ProcessMessages;
if OpenDialog1.Execute then
begin

AssignFile (F,OpenDialog1.FileName);
reset (F);
readln (F,S);
Data.ColCount:=StrToInt(S);
readln (F,S);
Data.RowCount:=StrToInt(S);
for i:=0 to Data.ColCount-1 do

for j:=0 to Data.RowCount-1 do
begin

readln (F,S);
Data.Cells[i,j]:=S;

end;
CloseFile (F);

end;
StatusBar1.Panels[1].Text:='Table size:

'+IntToStr(Data.ColCount-1)+'x'+IntToStr(Data.RowCount-1);
end;

Clicking the “Save” button, or choosing the File|Save menu, brings the save file
dialogue, in which we specify the name of the data file. Then, the data is being saved
as a text file. The SaveTableClick is handling the save operation.
procedure TDataInputForm.SaveTableClick(Sender: TObject); // Saves a data table
var

F : TextFile;
i,j : Integer;

begin
Application.ProcessMessages;
if SaveDialog1.Execute then
begin

if Pos('.',SaveDialog1.FileName)=0 then
SaveDialog1.FileName:=SaveDialog1.FileName+'.ARM';

AssignFile (F,SaveDialog1.FileName);
rewrite (F);

- 56 -

writeln (F,Data.ColCount);
writeln (F,Data.RowCount);
for i:=0 to Data.ColCount-1 do

for j:=0 to Data.RowCount-1 do
writeln (F,Data.Cells[i,j]);

CloseFile (F);
end;

end;

Clicking the “Association rules” button, or choosing the Associations|Find association
rules menu, starts the mining operation. We are first checking if our data table is
containing a valid data, if it isn’t, we are showing an error message. If the data is
valid, we are initializing the report, checking which algorithm to execute, and
executing the algorithm.
procedure TDataInputForm.AssociationRulesButtonClick(Sender: TObject);
var

x,y : integer;
Error : boolean;

begin
Error:=False;
FindInverse:=False;
FindAuto:=False;
for x:=1 to Data.ColCount-1 do

for y:=1 to Data.RowCount-1 do
if (Data.Cells[x,y]<>'0') and (Data.Cells[x,y]<>'1') then Error:=True;

if Not(Error) then
begin

ReportForm.ReportMemo.Clear;
ReportForm.ReportMemo.Lines.Add('Finding association rules - manual operation.');
ReportForm.ReportMemo.Lines.Add('Start time: '+TimeToStr(Time));
n:=1;
FreeLinkedList(IllegalList);
// Choose the right algorithm
if Native1.Checked=True then

NativeForm.Show
else if Apriori1.Checked=True then

AprioriForm.Show;
end
else
begin

MessageDlg('The table doesn''t contain information, or the information entered
isn’’t correct !', mtError ,[mbOk], 0);

end;
end;

Every form in Delphi as an event called Create. This event is fired when the form is
created. The procedure FormCreate is being executed, whenever this event is fired,
whenever the form is created. We are using this procedure to initialize some variables
in our program, such as the ItemSets’ hash table, and the Illegal List’s linked list. We
are also building the office 97 look alike menu in this procedure.
procedure TDataInputForm.FormCreate(Sender: TObject);
var

I,ToolSize : Integer;
tb : TToolButton;

begin
n:=0;
InitHashTable(ItemSets);
InitLinkedList(IllegalList);

ToolSize := 0;
for I := MainMenu.Items.Count - 1 downto 0 do
begin

tb := TToolButton.Create (ToolBarMenu);
tb.Parent := ToolBarMenu;
tb.AutoSize := True;
tb.Grouped := True;
tb.Caption := MainMenu.Items[I].Caption;

- 57 -

tb.MenuItem := MainMenu.Items[I];
Inc (ToolSize, tb.Width);

end;
// size the menu toolbar
ToolBarMenu.Width := ToolSize;
// hide the standard menu, using the form's Menu property
Menu := nil;

end;

The Exit1Click procedure implements the File|Exit menu operation.
procedure TDataInputForm.Exit1Click(Sender: TObject);
begin

Application.Terminate;
end;

procedure TDataInputForm.ResizeTableClick(Sender: TObject);
begin

DataInputForm.Enabled:=False;
ResizeTableForm.Show;

end;

Clicking the “Inverse association rules” button, or choosing the Associations|Find
inverse association rules menu, starts the mining operation. We are first checking if
our data table is containing a valid data, if it isn’t, we are showing an error message. If
the data is valid, we are initializing the report, checking which algorithm to execute,
and executing the algorithm. We’re also initializing the illegal list adding to it
itemsets, which have both positive and negative attribute.
procedure TDataInputForm.InverseAssociationRulesButtonClick(Sender: TObject);
var

x,y,j : Integer;
Error : Boolean;
S : TIntSet;

begin
FindInverse:=True;
FindAuto:=False;
Error:=False;
for x:=1 to Data.ColCount-1 do

for y:=1 to Data.RowCount-1 do
if (Data.Cells[x,y]<>'0') and (Data.Cells[x,y]<>'1') then Error:=True;

if Not(Error) then
begin

ReportForm.ReportMemo.Clear;
ReportForm.ReportMemo.Lines.Add('Finding inverse association rules - manual

operation.');
ReportForm.ReportMemo.Lines.Add('Start time: '+TimeToStr(Time));
n:=1;
FreeLinkedList(IllegalList);
for j:=1 to Data.ColCount-1 do
begin

S:=[];
S:=S+[j];
S:=S+[j+NEG_POS_ELEM];
AddLinkedList(IllegalList,S);

end;
// Choose the right algorithm
if Native1.Checked=True then

NativeForm.Show
else if Apriori1.Checked=True then

AprioriForm.Show;
end
else
begin

MessageDlg('The table doesn''t contain information, or the information entered
isn’’t correct !', mtError ,[mbOk], 0);

end;
end;

- 58 -

Choosing the Associations|Find association rules automatically menu, starts the
automatic mining operation. We are first checking if our data table is containing a
valid data, if it isn’t, we are showing an error message. If the data is valid, we are
initializing the report, checking which algorithm to execute, and executing the
algorithm.
procedure TDataInputForm.Findassociationrulesautomaticly1Click(Sender: TObject);
var

x,y : integer;
Error : boolean;

begin
Error:=False;
FindInverse:=False;
FindAuto:=True;
for x:=1 to Data.ColCount-1 do

for y:=1 to Data.RowCount-1 do
if (Data.Cells[x,y]<>'0') and (Data.Cells[x,y]<>'1') then Error:=True;

if Not(Error) then
begin

ReportForm.ReportMemo.Clear;
ReportForm.ReportMemo.Lines.Add('Finding association rules - automatic

operation.');
ReportForm.ReportMemo.Lines.Add('Start time: '+TimeToStr(Time));
n:=1;
FreeLinkedList(IllegalList);
if Native1.Checked=True then

NativeForm.Show
else if Apriori1.Checked=True then

AprioriForm.Show;
end
else
begin

MessageDlg('The table doesn''t contain information, or the information entered
isn’’t correct !', mtError ,[mbOk], 0);

end;
end;

Choosing the Associations|Find inverse association rules automatically menu, starts
the automatic mining operation. We are first checking if our data table is containing a
valid data, if it isn’t, we are showing an error message. If the data is valid, we are
initializing the report, checking which algorithm to execute, and executing the
algorithm. We’re also initializing the illegal list adding to it itemsets, which have both
positive and negative attribute.
procedure TDataInputForm.Findinverseassociationrulesautomaticly1Click(

Sender: TObject);
var

x,y,j : Integer;
Error : Boolean;
S : TIntSet;

begin
FindInverse:=True;
FindAuto:=True;
Error:=False;
for x:=1 to Data.ColCount-1 do

for y:=1 to Data.RowCount-1 do
if (Data.Cells[x,y]<>'0') and (Data.Cells[x,y]<>'1') then Error:=True;

if Not(Error) then
begin

ReportForm.ReportMemo.Clear;
ReportForm.ReportMemo.Lines.Add('Finding inverse association rules - automatic

operation.');
ReportForm.ReportMemo.Lines.Add('Start time: '+TimeToStr(Time));
n:=1;
FreeLinkedList(IllegalList);
for j:=1 to Data.ColCount-1 do
begin

S:=[];

- 59 -

S:=S+[j];
S:=S+[j+NEG_POS_ELEM];
AddLinkedList(IllegalList,S);

end;
if Native1.Checked=True then

NativeForm.Show
else if Apriori1.Checked=True then

AprioriForm.Show;
end
else
begin

MessageDlg('The table doesn''t contain information, or the information entered
isn’’t correct !', mtError ,[mbOk], 0);

end;
end;

Clicking the “New” button, or choosing the File|New menu, will execute the
NewTableButtonClick procedure. This procedure resizes the data table to 2 by 2,
and erases any old data stored in the table.
procedure TDataInputForm.NewTableButtonClick(Sender: TObject);
begin

Data.ColCount:=3;
Data.RowCount:=3;
Data.Cells[0,0]:='';
Data.Cells[1,0]:='C1';
Data.Cells[2,0]:='C2';
Data.Cells[0,1]:='I1';
Data.Cells[0,2]:='I2';
Data.Cells[1,1]:='';
Data.Cells[1,2]:='';
Data.Cells[2,1]:='';
Data.Cells[2,2]:='';
Data.FixedCols:=1;
Data.FixedRows:=1;
StatusBar1.Panels[1].Text:='Table size: 2x2';

end;

The SortItemsetsTable1Click turns the SortItemsetsTable flag on and off. It is
executed by choosing the Sorts|Sort Itemsets table menu.
procedure TDataInputForm.SortItemsetsTable1Click(Sender: TObject);
begin

SortItemsetsTable1.Checked:=Not(SortItemsetsTable1.Checked);
end;

The SortIllegalListTable1Click turns the SortIllegalListTable flag on and off. It
is executed by choosing the Sorts|Sort Illegal List table menu.
procedure TDataInputForm.SortIllegalListTable1Click(Sender: TObject);
begin

SortIllegalListTable1.Checked:=Not(SortIllegalListTable1.Checked);
end;

The SortAssociationsTable1Click turns the SortAssociationsTable flag on and
off. It is executed by choosing the Sorts|Sort Associations table menu.
procedure TDataInputForm.SortAssociationsTable1Click(Sender: TObject);
begin

SortAssociationsTable1.Checked:=Not(SortAssociationsTable1.Checked);
end;

The DataKeyPress is executed upon pressing a key while trying to change the data in
the data table. The purpose of this procedure is to ensure that the data table contains
only vales of zeros or ones.
procedure TDataInputForm.DataKeyPress(Sender: TObject; var Key: Char);
begin

- 60 -

if Key='0' then
Data.Cells[Data.Col,Data.Row]:='0'

else if Key='1' then
Data.Cells[Data.Col,Data.Row]:='1'

else
Key:=#0;

end;

Choosing the Help|About menu, or clicking the “About” button, will execute the
AboutBoxButtonClick procedure. This procedure shows the about box.
procedure TDataInputForm.AboutBoxButtonClick(Sender: TObject);
begin

DataInputForm.Enabled:=False;
AboutBoxForm.Show;

end;

The AssociationRulesMinerHomepage1Click procedure opens your default web
browser, showing you the association rules miner homepage. This is done by
choosing the Help|Association Rules Miner Homepage menu.
procedure TDataInputForm.AssociationRulesMinerHomepage1Click(Sender: TObject);
begin

ShellExecute(GetDesktopWindow(), 'open',
PChar('http://users.surfree.net.il/orennahum/assoc.htm'), nil, nil, SW_SHOWNORMAL);
end;

The SendusfeadbackviaEMail1Click procedure opens your default e-mail program,
setting it to send an e-mail to the author of the “association rules miner” program.
This is done by choosing the Help|Send us feedback via e-mail menu.
procedure TDataInputForm.SendusfeadbackviaEMail1Click(Sender: TObject);
begin
ShellExecute(GetDesktopWindow(), 'open', PChar('mailto:orennahum@yahoo.com'), nil,
nil, SW_SHOWNORMAL);
end;

The Showlastreport1Click procedure opens the report form. The report form
usually contains the last report, generated during the last mining operation. This
procedure is executed when choosing the Reports|Show last report menu.
procedure TDataInputForm.Showlastreport1Click(Sender: TObject);
begin

ReportForm.Show;
end;

The Generatereports1Click procedure turns on and off the generate reports flag.
This procedure is executed upon choosing the Reports|Generate reports menu.
procedure TDataInputForm.Generatereports1Click(Sender: TObject);
begin

Generatereports1.Checked:=Not(Generatereports1.Checked);
end;

The Apriori1Click procedure sets the mining algorithm to be used as the Apriori
algorithm. This procedure is executed upon choosing the Algorithm|Apriori menu.
procedure TDataInputForm.Apriori1Click(Sender: TObject);
begin

if Apriori1.Checked=False then
begin

Native1.Checked:=False;
Apriori1.Checked:=True;

end;
end;

- 61 -

The Native1Click procedure sets the mining algorithm to be used as the Native
algorithm. This procedure is executed when choosing the Algorithm|Native menu.
procedure TDataInputForm.Native1Click(Sender: TObject);
begin

if Native1.Checked=False then
begin

Apriori1.Checked:=False;
Native1.Checked:=True;

end;
end;

The FormClose procedure is executed when the form is closed, when the program is
ended. We are using this procedure as an opportunity to free dynamically allocated
memory.
procedure TDataInputForm.FormClose(Sender: TObject;

var Action: TCloseAction);
begin

Data.Cells[0,0]:='';
Data.Cells[1,0]:='C1';
Data.Cells[2,0]:='C2';
Data.Cells[0,1]:='I1';
Data.Cells[0,2]:='I2';
Data.Cells[1,1]:='';
Data.Cells[1,2]:='';
Data.Cells[2,1]:='';
Data.Cells[2,2]:='';
FreeHashTable(ItemSets);
FreeLinkedList(IllegalList);

end;

The Timer1Timer procedure updated the memory available for the program as
reported by windows. This procedure is executed every 1 second.
procedure TDataInputForm.Timer1Timer(Sender: TObject);
var

MemBuf : _MEMORYSTATUS;
begin

GlobalMemoryStatus(MemBuf);
StatusBar1.Panels[2].Text:='Free Memory: '+IntToStr(MemBuf.dwAvailPhys div

1024)+'KB.';
end;

Since the menu can be dragged and even hidden (as in office), the MainMenu2Click is
used whenever the user wants to hide or show the menu. This procedure is executed
from a pop-up menu.
procedure TDataInputForm.MainMenu2Click(Sender: TObject);
begin

ToolBarMenu.Visible:=Not(ToolBarMenu.Visible);
end;

A pop-up menu is used to show or hide the menu and the tool-bar. This procedure is
executed when the pop-up menu appears, and updates the status (visible or hidden) of
the menu and the tool-bar.
procedure TDataInputForm.ControlBarPopupMenuPopup(Sender: TObject);
begin

MainMenu2.Checked:=ToolBarMenu.Visible;
ToolBar1.Checked:=ToolBarButtons.Visible;

end;

- 62 -

As with the menu, the tool bar can also be dragged and hidden, so the
ControlBarPopupMenuPopup is used whenever the user wants to hide or show the
tool-bar. This procedure is executed from a pop-up menu.
procedure TDataInputForm.ToolBar1Click(Sender: TObject);
begin

ToolBarButtons.Visible:=Not(ToolBarButtons.Visible);
end;

The FillWithRandomValues1Click procedure is executed upon choosing the
File|Fill with random values menu. It fills the data table with random values of 1 and
0. This is useful for testing purposes.
procedure TDataInputForm.FillWithRandomValues1Click(Sender: TObject);
var

x,y : Integer;
begin

for x:=1 to Data.ColCount-1 do
for y:=1 to Data.RowCount-1 do

Data.Cells[x,y]:=char(random(2)+ord('0'));
end;

end.

5.2. NativeUnit Unit

unit NativeUnit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Grids,DataInputUnit, StdCtrls,Sets,Math, ExtCtrls, LinkedList,HashTable;

type
TNativeForm = class(TForm)

SetsTable: TStringGrid;

- 63 -

NextButton: TButton;
StopButton: TButton;
GroupBox1: TGroupBox;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
PreviousButton: TButton;
StringGrid1: TStringGrid;
AutoAssociationTimer: TTimer;
StringGrid2: TStringGrid;
StringGrid3: TStringGrid;
procedure FormShow(Sender: TObject);
procedure FindTheshold(var MinSupport,MaxSupport,Threshold:Integer);
procedure NextButtonClick(Sender: TObject);
procedure PreviousButtonClick(Sender: TObject);
procedure StopButtonClick(Sender: TObject);
procedure SortTable;
procedure SortILTable;
procedure AutoAssociationTimerTimer(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
NativeForm: TNativeForm;

implementation

uses FinalAssociationUnit, ProgressUnit, ReportUnit;

{$R *.DFM}

The FindTheshold procedure calculates the threshold using the minsuport,
maxsuport and the previous threshold.
procedure TNativeForm.FindTheshold(var MinSupport,MaxSupport,Threshold:Integer);
var

i:integer;

function Min(x,y:Integer):Integer; // Returns the smaller number between two numbers
begin

if x<y then Min:=x else Min:=y;
end;

function Max(x,y:Integer):Integer; // Returns the higher number between two numbers
begin

if x>y then Max:=x else Max:=y;
end;

begin
MaxSupport:=StrToInt(SetsTable.cells[1,1]);
MinSupport:=MaxSupport;
for i:=2 to SetsTable.RowCount-1 do
begin

Application.ProcessMessages;
if StrToInt(SetsTable.Cells[1,i])>MaxSupport then

MaxSupport:=StrToInt(SetsTable.Cells[1,i])
else if StrToInt(SetsTable.Cells[1,i])<MinSupport then

MinSupport:=StrToInt(SetsTable.Cells[1,i])
end;

if n=1 then
begin

if MaxSupport>MinSupport then
Threshold:=Max(2,MinSupport+1)

else if MaxSupport=MinSupport then
Threshold:=Max(2,MinSupport);

end
else

- 64 -

begin
if MaxSupport>MinSupport then

Threshold:=Min(Max(2,MinSupport+1),Threshold)
else if MaxSupport=MinSupport then

Threshold:=Max(2,MinSupport);
end;

end;

The FormShow procedure is executed whenever the form becomes visible. It is the
main procedure of this form, because is encapsulates the entire Native algorithm. It
creates all Itemsets with n elements. Then it add all itemsets which have no subsets in
the Illegal list to the Itemsets table, calculates the threshold and add Itemsets to the
Illegal list according to the threshold.
procedure TNativeForm.FormShow(Sender: TObject);
var

x : Integer;
i,j : Integer;
Se : TIntSet;
count : integer;
min,max:integer;
S : TIntSet;
ISA : TLinkedSetsPtr;

begin
SetsTable.Visible:=False;
StringGrid1.Visible:=False;
AutoAssociationTimer.Enabled:=False;
NextButton.Enabled:=False; // Disabling all buttons
PreviousButton.Enabled:=False;
StopButton.Enabled:=False;
NativeForm.Caption:='Native Algorithm - Stage number '+IntToStr(n);
Label1.caption:='All the sets found in this stage contain '+IntToStr(n)+'

elements.';
Label2.Caption:='MinSupport is: ';
Label3.Caption:='MaxSupport is: ';
Label4.Caption:='The threshold is: ';
ReportForm.ReportMemo.Lines.Add('');
ReportForm.ReportMemo.Lines.Add('Stage number '+IntToStr(n));
ReportForm.ReportMemo.Lines.Add('Start time: '+TimeToStr(Time));

//FreeLinkedList(ItemSets);
FreeHashTable(ItemSets);

for i:=1 to DataInputForm.Data.RowCount-1 do // Scan all rows
begin

S:=[];
for j:=1 to DataInputForm.Data.ColCount-1 do
begin

if DataInputForm.Data.Cells[j,i]='1' then // Creates a set
S:=S+[j]

else
if FindInverse then

S:=S+[j+NEG_POS_ELEM];
end;
SerIndex:=0;
PowerSet (S,n,i); // Gets all subsets length n

end;

StringGrid1.Cells[0,0]:='Illegal set';
StringGrid1.RowCount:=1;
SetsTable.Cells[0,0]:='Sets';
SetsTable.Cells[1,0]:='Frequency';
SetsTable.RowCount:=1;

NativeForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Updating Itemsets table...';
//ISA:=ItemSets.Head;
HashTableHead(ItemSets);
ISA:=ItemSets.DataPtr;
//for x:=0 to ItemSets.Count-1 do

- 65 -

for x:=0 to HashTableCount(ItemSets)-1 do
begin

//if ItemSets.Count>1 then
if HashTableCount(ItemSets)>1 then

//ProgressForm.ProgressBar1.Position:=Trunc(100*x/(ItemSets.Count-1))
ProgressForm.ProgressBar1.Position:=Trunc(100*x/(HashTableCount(ItemSets)-1))

else
ProgressForm.ProgressBar1.Position:=100;

ProgressForm.Process;
if ISA^.Data<>[] then
begin

count:=0;
for i:=1 to DataInputForm.Data.RowCount-1 do
begin

Application.ProcessMessages;
Se:=[];
for j:=1 to DataInputForm.Data.ColCount-1 do
begin

Application.ProcessMessages;
if DataInputForm.Data.Cells[j,i]='1' then

Se:=Se+[j]
else

if FindInverse then
Se:=Se+[j+NEG_POS_ELEM]; // Creates a set from a line

end;
if ISA^.Data<=Se then count:=count+1;

end;
if not(HasSubSetInIL(ISA^.Data)) then // This Itemset has no subset which is in

the illegal sets
begin

SetsTable.RowCount:=SetsTable.RowCount+1;
SetsTable.Cells[1,SetsTable.RowCount-1]:=IntToStr(count);
SetsTable.Cells[0,SetsTable.RowCount-1]:=SetToStr(ISA^.Data);

end;
end;
//ISA:=ISA^.Next;
HashTableNext(ItemSets);
ISA:=ItemSets.DataPtr;

end;
ProgressForm.Hide;
NativeForm.Enabled:=True;

if SetsTable.RowCount>1 then
begin

SetsTable.FixedRows:=1;

FindTheshold(min,max,threshold); // Finds MinSupport, MaxSupport and the Threshold
Label2.Caption:='MinSupport is: '+IntToStr(Min);
Label3.Caption:='MaxSupport is: '+IntToStr(Max);
Label4.Caption:='The threshold is: '+IntToStr(Threshold);

// Adds Itemsets which their supports are lower than the Threshold
NativeForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Adding Itemsets to the Illegal List table...';
//ISA:=ItemSets.Head;
HashTableHead(ItemSets);
ISA:=ItemSets.DataPtr;
//for x:=0 to ItemSets.Count-1 do
for x:=0 to HashTableCount(ItemSets)-1 do
begin

//if ItemSets.Count>1 then
if HashTableCount(ItemSets)>1 then

//ProgressForm.ProgressBar1.Position:=Trunc(100*x/(ItemSets.Count-1))
ProgressForm.ProgressBar1.Position:=Trunc(100*x/(HashTableCount(ItemSets)-1))

else
ProgressForm.ProgressBar1.Position:=100;

ProgressForm.Process;
if ISA^.Data<>[] then
begin

count:=0;
for i:=1 to DataInputForm.Data.RowCount-1 do // Checks each row
begin

Se:=[];

- 66 -

for j:=1 to DataInputForm.Data.ColCount-1 do // Create the set from the row
begin

Application.ProcessMessages;
if DataInputForm.Data.Cells[j,i]='1' then

Se:=Se+[j]
else
if FindInverse then

Se:=Se+[j+NEG_POS_ELEM]; // Creates a set from a line
end;
if ISA^.Data<=Se then count:=count+1;

end;
if (not(HasSubSetInIL(ISA^.Data))) and (count<Threshold) then
begin

AddLinkedList(IllegalList,ISA^.Data);
end;

end;
//ISA:=ISA^.Next;
HashTableNext(ItemSets);
ISA:=ItemSets.DataPtr;

end;
ProgressForm.Hide;
NativeForm.Enabled:=True;

//Show Illegal list
ReportForm.ReportMemo.Lines.Add('Current Illegal List:');
ISA:=IllegalList.Head;
for x:=1 to IllegalList.Count do
begin

if NumOfElements(ISA^.Data)<=n then
begin

Application.ProcessMessages;
StringGrid1.RowCount:=StringGrid1.RowCount+1;
StringGrid1.Cells[0,StringGrid1.RowCount-1]:=SetToStr(ISA^.Data);
ReportForm.ReportMemo.Lines.Add(SetToStr(ISA^.Data));

end;
ISA:=ISA^.Next;

end;
StringGrid1.FixedRows:=1;
if DataInputForm.SortIllegalListTable1.Checked then

SortILTable;
if DataInputForm.SortItemsetsTable1.Checked then

SortTable;
AutoAssociationTimer.Enabled:=True;

end
else
begin

Hide;
FinalAssociationForm.Show;

end;
NextButton.Enabled:=True;
PreviousButton.Enabled:=True;
StopButton.Enabled:=True;
SetsTable.Visible:=True;
StringGrid1.Visible:=True;
ReportForm.ReportMemo.Lines.Add('End time: '+TimeToStr(Time));

end;

The NextButtonClick procedure is executed whenever the user clicks the “next”
button. It shows the next stage of the Apriori algorithm.
procedure TNativeForm.NextButtonClick(Sender: TObject);
begin

n:=n+1; // Increase stage counter
FormShow(Sender);

end;

The PreviousButtonClick procedure is executed whenever the user clicks the
“previous” button. It shows the previous stage of the Apriori algorithm, or shows a
warning massage if this is the first stage.
procedure TNativeForm.PreviousButtonClick(Sender: TObject);

- 67 -

begin
if n>1 then
begin

n:=n-1; // Decrease stage counter
FormShow(Sender);

end
else
begin

MessageDlg('This is the first stage, there was no other stage before this one !',
mtError ,[mbOk], 0);

end;
end;

The StopButtonClick procedure is executed whenever the user clicks the “stop”
button. It stops the Apriori algorithm, and returns the program to the main screen.
procedure TNativeForm.StopButtonClick(Sender: TObject);
begin

Hide;
end;

The SortTable procedure sorts the Itemsets table, in every stage of the algorithm, if
the sorting was enabled (from the main screen from). This is an implementation of the
heap-sort algorithm.
procedure TNativeForm.SortTable;
var

x : LongWord;
Temp : String;

Procedure Heapify (i,Size:LongWord); { "Fixs" a branch in the heap array }
var

Largest : LongWord;
Temp : String;

begin
repeat

Largest:=i;
if (2*i<=Size) then

if (SetsTable.Cells[0,2*i]>SetsTable.Cells[0,i]) then Largest:=2*i;
if (2*i+1<=Size) then

if (SetsTable.Cells[0,2*i+1]>SetsTable.Cells[0,Largest]) then Largest:=2*i+1;
if Largest<>i then
begin

Temp:=SetsTable.Cells[0,i];
SetsTable.Cells[0,i]:=SetsTable.Cells[0,Largest]; { We have to swap the two

variables }
SetsTable.Cells[0,Largest]:=Temp;
Temp:=SetsTable.Cells[1,i];
SetsTable.Cells[1,i]:=SetsTable.Cells[1,Largest]; { We have to swap the two

variables }
SetsTable.Cells[1,Largest]:=Temp;
i:=Largest;

end
else

i:=Size+1;
until i>=Size;

end;

begin
NativeForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Sorting Itemsets table...';
for x:=(SetsTable.RowCount-1 div 2) downto 1 do { "Fixs" the array to a heap form,

from the father variable to the begining of the array }
begin

ProgressForm.ProgressBar1.Position:=Trunc(100*((SetsTable.RowCount-1 div
2)-x)/(SetsTable.RowCount-1 div 2 + SetsTable.RowCount-2));

ProgressForm.Process;
Heapify (x,SetsTable.RowCount-1);

end;
for x:=SetsTable.RowCount-1 downto 2 do

- 68 -

begin
ProgressForm.ProgressBar1.Position:=Trunc(100*((SetsTable.RowCount-1 div 2) +

SetsTable.RowCount-2 - x)/(SetsTable.RowCount-1 div 2 + SetsTable.RowCount-2));
ProgressForm.Process;
Temp:=SetsTable.Cells[0,x];
SetsTable.Cells[0,x]:=SetsTable.Cells[0,1]; { We have to swap the two variables }
SetsTable.Cells[0,1]:=Temp;
Temp:=SetsTable.Cells[1,x];
SetsTable.Cells[1,x]:=SetsTable.Cells[1,1]; { We have to swap the two variables }
SetsTable.Cells[1,1]:=Temp;
Heapify(1,SetsTable.RowCount-1-(SetsTable.RowCount-x));

end;

ProgressForm.ProgressBar1.Position:=Trunc(100*(SetsTable.RowCount-1)/(SetsTable.RowCou
nt-1));

ProgressForm.Process;
ProgressForm.Hide;
NativeForm.Enabled:=True;

end;

The SortILTable procedure sorts the Illegal List table, in every stage of the
algorithm, if the sorting was enabled (from the main screen from). This is an
implementation of the heap-sort algorithm.
procedure TNativeForm.SortILTable;
var

i,j : integer; { Variables used for array scanning }
flg : boolean; { A flag }
Temp: String;

begin
NativeForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Sorting Illega List table...';
i:=StringGrid1.RowCount-1; { i gets the size of the array }
flg:=true; { If the flag is set to true, then the array is not sorted }
while (i>1) and (flg) do { If i is bigger than 1 and the flag is set to true (the

array isn't sorted) }
begin

ProgressForm.ProgressBar1.Position:=Trunc(100*(StringGrid1.RowCount-1-i)/(StringGrid1.
RowCount-1));

ProgressForm.Process;
flg:=false; { Let's assume the the array is already sorted }
for j:=1 to i-1 do { We are scanning variables 1 to i-1 of the array }

if StringGrid1.Cells[0,j]>StringGrid1.Cells[0,j+1] then { If variable j is
bigger than variable j+1 }

begin
flg:=true; { The array isn't sorted, another chack is needed }
Temp:=StringGrid1.Cells[0,j];
StringGrid1.Cells[0,j]:=StringGrid1.Cells[0,j+1]; { We have to swap the two

variables }
StringGrid1.Cells[0,j+1]:=Temp;

end;
i:=i-1; { Variable i is "sorted", we should chack again from 1 to i-1 }

end; { The array is sorted }
ProgressForm.Hide;
NativeForm.Enabled:=True;

end;

procedure TNativeForm.AutoAssociationTimerTimer(Sender: TObject);
begin

AutoAssociationTimer.Enabled:=False;
if FindAuto then

NextButtonClick(Sender);
end;

The SortTable procedure sorts the Itemsets table, in every stage of the algorithm, if
the sorting was enabled (from the main screen from). This is an implementation of the
heap-sort algorithm.

- 69 -

procedure TNativeForm.FormCreate(Sender: TObject);
begin

StringGrid2.Cells[0,0]:='Illegal set';
StringGrid3.Cells[0,0]:='Sets';
StringGrid3.Cells[1,0]:='Frequency';

end;

end.

5.3. AprioriUnit Unit

unit AprioriUnit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Grids,DataInputUnit, StdCtrls,Sets,Math, ExtCtrls, LinkedList,HashTable;

type
TAprioriForm = class(TForm)

SetsTable: TStringGrid;
NextButton: TButton;
StopButton: TButton;
GroupBox1: TGroupBox;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
PreviousButton: TButton;
AprioriILGrid: TStringGrid;
AutoAssociationTimer: TTimer;
StringGrid2: TStringGrid;
StringGrid3: TStringGrid;
procedure FormShow(Sender: TObject);
procedure FindTheshold(var MinSupport,MaxSupport,Threshold:Integer);
procedure NextButtonClick(Sender: TObject);
procedure PreviousButtonClick(Sender: TObject);
procedure StopButtonClick(Sender: TObject);
procedure SortTable;

- 70 -

procedure SortILTable;
procedure AutoAssociationTimerTimer(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Create_1_Itemsets;
procedure Create_n_Itemsets;

private
{ Private declarations }

public
{ Public declarations }

end;

var
AprioriForm: TAprioriForm;

implementation

uses FinalAssociationUnit, ProgressUnit, ReportUnit;

{$R *.DFM}

The FindTheshold procedure calculates the threshold using the minsuport,
maxsuport and the previous threshold.
procedure TAprioriForm.FindTheshold(var MinSupport,MaxSupport,Threshold:Integer);
var

i:integer;

function Min(x,y:Integer):Integer; // Returns the smaller number between two numbers
begin

if x<y then Min:=x else Min:=y;
end;

function Max(x,y:Integer):Integer; // Returns the higher number between two numbers
begin

if x>y then Max:=x else Max:=y;
end;

begin
MaxSupport:=StrToInt(SetsTable.cells[1,1]);
MinSupport:=MaxSupport;
for i:=2 to SetsTable.RowCount-1 do
begin

Application.ProcessMessages;
if StrToInt(SetsTable.Cells[1,i])>MaxSupport then

MaxSupport:=StrToInt(SetsTable.Cells[1,i])
else if StrToInt(SetsTable.Cells[1,i])<MinSupport then

MinSupport:=StrToInt(SetsTable.Cells[1,i])
end;

if n=1 then
begin

if MaxSupport>MinSupport then
Threshold:=Max(2,MinSupport+1)

else if MaxSupport=MinSupport then
Threshold:=Max(2,MinSupport);

end
else
begin

if MaxSupport>MinSupport then
Threshold:=Min(Max(2,MinSupport+1),Threshold)

else if MaxSupport=MinSupport then
Threshold:=Max(2,MinSupport);

end;
end;

The Create_1_Itemsets procedure is uses to create all Itemsets with 1 element. This
is needed for the first stage of the Apriori algorithm.
procedure TAprioriForm.Create_1_Itemsets;
var

x : integer;
begin

- 71 -

FreeHashTable(ItemSets);
for x:=1 to DataInputForm.Data.ColCount-1 do
begin

AddHashTable(ItemSets,[x]);
if FindInverse then
begin

AddHashTable(ItemSets,[x+NEG_POS_ELEM]);
end;
ProgressForm.Process;

end;
end;

The Create_n_Itemsets procedure is uses to create all Itemsets with n elements.
This is needed for the Apriori algorithm.
procedure TAprioriForm.Create_n_Itemsets;
var

SubsCount : LongWord;
i,j,x,y : integer;
Se1 : array[1..MAX_SET_SIZE] of byte;
Se2 : array[1..MAX_SET_SIZE] of byte;
Add : Boolean;
TempISArrayP,NewItemSet : TLinkedSet;
H1,H2 : TLinkedSetsPtr;
DataPtr : TLinkedSetsPtr;
DataLoc : Integer;

begin
SubsCount:=0;
InitLinkedList(TempISArrayP);
InitLinkedList(NewItemSet);
ProgressForm.Show;
ProgressForm.Label1.Caption:='Creating subsets...';

if HashTableCount(ItemSets)>1 then
begin

// Scans all sets-last
HashTableHead(ItemSets);
H1:=ItemSets.DataPtr;
for i:=0 to HashTableCount(ItemSets)-2 do
begin

// Translates the set in H1^.Data to an array Se1[]
y:=1;
for x:=1 to MAX_SET_SIZE do
begin

Se1[x]:=0;
if x in H1^.Data then
begin

Se1[y]:=x;
Inc(y);

end;
ProgressForm.Process;

end;
// Compares set with the rest of the sets
DataPtr:=ItemSets.DataPtr;
DataLoc:=ItemSets.DataLoc;
HashTableNext(ItemSets);
H2:=ItemSets.DataPtr;
for j:=i+1 to HashTableCount(ItemSets)-1 do
begin

// Translates the set in H2^.Data to an array Se2[]
y:=1;
for x:=1 to MAX_SET_SIZE do
begin

Se2[x]:=0;
if x in H2^.Data then
begin

Se2[y]:=x;
Inc(y);

end;
ProgressForm.Process;

end;
// Checks whether we should add the new combined set
Add:=True;

- 72 -

// If we have first n-2 equal elements then add
for x:=1 to n-2 do
begin

if Se1[x]<>Se2[x] then
begin

Add:=False;
break;

end;
ProgressForm.Process;

end;
// Now do the adding
if Add then
begin

if NumOfElements(H1^.Data+H2^.Data)=n then
AddLinkedList(TempISArrayP,H1^.Data+H2^.Data);

end;
Inc(SubsCount);

ProgressForm.ProgressBar1.Position:=Trunc(SubsCount/(HashTableCount(ItemSets)*(HashTab
leCount(ItemSets)-1)/2)*100);

ProgressForm.Process;
HashTableNext(ItemSets);
H2:=ItemSets.DataPtr;

end;
ItemSets.DataPtr:=DataPtr;
ItemSets.DataLoc:=DataLoc;
HashTableNext(ItemSets);
H1:=ItemSets.DataPtr;

end;
end;

if TempISArrayP.Count>0 then
begin

Add:=True;
H1:=TempISArrayP.Head;
for x:=0 to TempISArrayP.Count-1 do
begin

Add:=False;
for y:=1 to MAX_SET_SIZE do
begin

if y in H1^.Data then
begin

HashTableHead(ItemSets);
H2:=ItemSets.DataPtr;
for i:=0 to HashTableCount(ItemSets)-1 do
begin

if H2^.Data=(H1^.Data-[y]) then
begin

Add:=True;
break;

end;
HashTableNext(Itemsets);
H2:=ItemSets.DataPtr;
ProgressForm.Process;

end;
if Add then

Break;
end;
ProgressForm.Process;

end;
if Add then

AddLinkedList(NewItemSet,H1^.Data);
H1:=H1^.Next;

end;
end;
FreeLinkedList(TempISArrayP);
FreeHashTable(ItemSets);
H1:=NewItemSet.Head;
for x:=1 to NewItemSet.Count do
begin

AddHashTable(ItemSets,H1^.Data);
H1:=H1^.Next;

end;
ProgressForm.Hide;

- 73 -

end;

The FormShow procedure is executed whenever the form becomes visible. It is the
main procedure of this form, because is encapsulates the entire Apriori algorithm. It
creates all Itemsets with n elements. Then it add all itemsets which have no subsets in
the Illegal list to the Itemsets table, calculates the threshold and add Itemsets to the
Illegal list according to the threshold.
procedure TAprioriForm.FormShow(Sender: TObject);
var

x : Integer;
i,j : Integer;
Se : TIntSet;
count : integer;
min,max:integer;
ISA : TLinkedSetsPtr;

begin
SetsTable.Visible:=False;
AprioriILGrid.Visible:=False;
AutoAssociationTimer.Enabled:=False;
NextButton.Enabled:=False; // Disabling all buttons
PreviousButton.Enabled:=False;
StopButton.Enabled:=False;
AprioriForm.Caption:='Apriori Algorithm - Stage number '+IntToStr(n);
Label1.caption:='All the sets found in this stage contain '+IntToStr(n)+'

elements.';
Label2.Caption:='MinSupport is: ';
Label3.Caption:='MaxSupport is: ';
Label4.Caption:='The threshold is: ';
ReportForm.ReportMemo.Lines.Add('');
ReportForm.ReportMemo.Lines.Add('Stage number '+IntToStr(n));
ReportForm.ReportMemo.Lines.Add('Start time: '+TimeToStr(Time));

if n=1 then
Create_1_Itemsets

else
Create_n_Itemsets;

AprioriILGrid.Cells[0,0]:='Illegal set';
AprioriILGrid.RowCount:=1;
SetsTable.Cells[0,0]:='Sets';
SetsTable.Cells[1,0]:='Frequency';
SetsTable.RowCount:=1;

AprioriForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Updating Itemsets table...';
HashTableHead(ItemSets);
ISA:=ItemSets.DataPtr;
for x:=0 to HashTableCount(ItemSets)-1 do
begin

if HashTableCount(ItemSets)>1 then
ProgressForm.ProgressBar1.Position:=Trunc(100*x/(HashTableCount(ItemSets)-1))

else
ProgressForm.ProgressBar1.Position:=100;

ProgressForm.Process;
if ISA^.Data<>[] then
begin

count:=0;
for i:=1 to DataInputForm.Data.RowCount-1 do
begin

Application.ProcessMessages;
Se:=[];
for j:=1 to DataInputForm.Data.ColCount-1 do
begin

Application.ProcessMessages;
if DataInputForm.Data.Cells[j,i]='1' then

Se:=Se+[j]
else

if FindInverse then
Se:=Se+[j+NEG_POS_ELEM]; // Creates a set from a line

- 74 -

end;
if ISA^.Data<=Se then count:=count+1;

end;
if not(HasSubSetInIL(ISA^.Data)) then // This Itemset has no subset which is in

the illegal sets
begin

SetsTable.RowCount:=SetsTable.RowCount+1;
SetsTable.Cells[1,SetsTable.RowCount-1]:=IntToStr(count);
SetsTable.Cells[0,SetsTable.RowCount-1]:=SetToStr(ISA^.Data);

end;
end;
HashTableNext(ItemSets);
ISA:=ItemSets.DataPtr;

end;
ProgressForm.Hide;
AprioriForm.Enabled:=True;

if SetsTable.RowCount>1 then
begin

SetsTable.FixedRows:=1;

FindTheshold(min,max,threshold); // Finds MinSupport, MaxSupport and the Threshold
Label2.Caption:='MinSupport is: '+IntToStr(Min);
Label3.Caption:='MaxSupport is: '+IntToStr(Max);
Label4.Caption:='The threshold is: '+IntToStr(Threshold);

// Adds Itemsets which their supports is lower than the Threshold
AprioriForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Adding Itemsets to the Illegal List table...';
HashTableHead(ItemSets);
ISA:=ItemSets.DataPtr;
for x:=0 to HashTableCount(ItemSets)-1 do
begin

if HashTableCount(ItemSets)>1 then
ProgressForm.ProgressBar1.Position:=Trunc(100*x/(HashTableCount(ItemSets)-1))

else
ProgressForm.ProgressBar1.Position:=100;

ProgressForm.Process;
if ISA^.Data<>[] then
begin

count:=0;
for i:=1 to DataInputForm.Data.RowCount-1 do // Checks each row
begin

Se:=[];
for j:=1 to DataInputForm.Data.ColCount-1 do // Create the set from the row
begin

Application.ProcessMessages;
if DataInputForm.Data.Cells[j,i]='1' then

Se:=Se+[j]
else
if FindInverse then

Se:=Se+[j+NEG_POS_ELEM]; // Creates a set from a line
end;
if ISA^.Data<=Se then count:=count+1;

end;
if (not(HasSubSetInIL(ISA^.Data))) and (count<Threshold) then
begin

AddLinkedList(IllegalList,ISA^.Data);
ISA^.Data:=[];

end;
end;
HashTableNext(ItemSets);
ISA:=ItemSets.DataPtr;

end;
ProgressForm.Hide;
AprioriForm.Enabled:=True;

//Show Illegal list
ReportForm.ReportMemo.Lines.Add('Current Illegal List:');
ISA:=IllegalList.Head;
for x:=1 to IllegalList.Count do
begin

if NumOfElements(ISA^.Data)<=n then

- 75 -

begin
Application.ProcessMessages;
AprioriILGrid.RowCount:=AprioriILGrid.RowCount+1;
AprioriILGrid.Cells[0,AprioriILGrid.RowCount-1]:=SetToStr(ISA^.Data);
ReportForm.ReportMemo.Lines.Add(SetToStr(ISA^.Data));

end;
ISA:=ISA^.Next;

end;
AprioriILGrid.FixedRows:=1;
if DataInputForm.SortIllegalListTable1.Checked then

SortILTable;
if DataInputForm.SortItemsetsTable1.Checked then

SortTable;
AutoAssociationTimer.Enabled:=True;

end
else
begin

Hide;
FinalAssociationForm.Show;

end;
NextButton.Enabled:=True;
PreviousButton.Enabled:=True;
StopButton.Enabled:=True;
SetsTable.Visible:=True;
AprioriILGrid.Visible:=True;
ReportForm.ReportMemo.Lines.Add('End time: '+TimeToStr(Time));

end;

The NextButtonClick procedure is executed whenever the user clicks the “next”
button. It shows the next stage of the Apriori algorithm.
procedure TAprioriForm.NextButtonClick(Sender: TObject);
begin

n:=n+1; // Increase stage counter
FormShow(Sender);

end;

The PreviousButtonClick procedure is executed whenever the user clicks the
“previous” button. It shows the previous stage of the Apriori algorithm, or shows a
warning massage if this is the first stage.
procedure TAprioriForm.PreviousButtonClick(Sender: TObject);
begin

if n>1 then
begin

n:=n-1; // Decrease stage counter
FormShow(Sender);

end
else
begin

MessageDlg('This is the first stage, there was no other stage before this one !',
mtError ,[mbOk], 0);

end;
end;

The StopButtonClick procedure is executed whenever the user clicks the “stop”
button. It stops the Apriori algorithm, and returns the program to the main screen.
procedure TAprioriForm.StopButtonClick(Sender: TObject);
begin

Hide;
end;

The SortTable procedure sorts the Itemsets table, in every stage of the algorithm, if
the sorting was enabled (from the main screen from). This is an implementation of the
heap-sort algorithm.
procedure TAprioriForm.SortTable;
var

- 76 -

x : LongWord;
Temp : String;

Procedure Heapify (i,Size:LongWord); { "Fixs" a branch in the heap array }
var

Largest : LongWord;
Temp : String;

begin
repeat

Largest:=i;
if (2*i<=Size) then

if (SetsTable.Cells[0,2*i]>SetsTable.Cells[0,i]) then Largest:=2*i;
if (2*i+1<=Size) then

if (SetsTable.Cells[0,2*i+1]>SetsTable.Cells[0,Largest]) then Largest:=2*i+1;
if Largest<>i then
begin

Temp:=SetsTable.Cells[0,i];
SetsTable.Cells[0,i]:=SetsTable.Cells[0,Largest]; { We have to swap the two

variables }
SetsTable.Cells[0,Largest]:=Temp;
Temp:=SetsTable.Cells[1,i];
SetsTable.Cells[1,i]:=SetsTable.Cells[1,Largest]; { We have to swap the two

variables }
SetsTable.Cells[1,Largest]:=Temp;
i:=Largest;

end
else

i:=Size+1;
until i>=Size;

end;

begin
AprioriForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Sorting Itemsets table...';
for x:=(SetsTable.RowCount-1 div 2) downto 1 do { "Fixs" the array to a heap form,

from the father variable to the begining of the array }
begin

ProgressForm.ProgressBar1.Position:=Trunc(100*((SetsTable.RowCount-1 div
2)-x)/(SetsTable.RowCount-1 div 2 + SetsTable.RowCount-2));

ProgressForm.Process;
Heapify (x,SetsTable.RowCount-1);

end;
for x:=SetsTable.RowCount-1 downto 2 do
begin

ProgressForm.ProgressBar1.Position:=Trunc(100*((SetsTable.RowCount-1 div 2) +
SetsTable.RowCount-2 - x)/(SetsTable.RowCount-1 div 2 + SetsTable.RowCount-2));

ProgressForm.Process;
Temp:=SetsTable.Cells[0,x];
SetsTable.Cells[0,x]:=SetsTable.Cells[0,1]; { We have to swap the two variables }
SetsTable.Cells[0,1]:=Temp;
Temp:=SetsTable.Cells[1,x];
SetsTable.Cells[1,x]:=SetsTable.Cells[1,1]; { We have to swap the two variables }
SetsTable.Cells[1,1]:=Temp;
Heapify(1,SetsTable.RowCount-1-(SetsTable.RowCount-x));

end;

ProgressForm.ProgressBar1.Position:=Trunc(100*(SetsTable.RowCount-1)/(SetsTable.RowCou
nt-1));

ProgressForm.Process;
ProgressForm.Hide;
AprioriForm.Enabled:=True;

end;

The SortILTable procedure sorts the Illegal List table, in every stage of the
algorithm, if the sorting was enabled (from the main screen from). This is an
implementation of the heap-sort algorithm.
procedure TAprioriForm.SortILTable;
var

i,j : integer; { Variables used for array scanning }

- 77 -

flg : boolean; { A flag }
Temp: String;

begin
AprioriForm.Enabled:=False;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Sorting Illega List table...';
i:=AprioriILGrid.RowCount-1; { i gets the size of the array }
flg:=true; { If the flag is set to true, then the array is not sorted }
while (i>1) and (flg) do { If i is bigger than 1 and the flag is set to true (the

array isn't sorted) }
begin

ProgressForm.ProgressBar1.Position:=Trunc(100*(AprioriILGrid.RowCount-1-i)/(AprioriILG
rid.RowCount-1));

ProgressForm.Process;
flg:=false; { Let's assume the the array is already sorted }
for j:=1 to i-1 do { We are scanning variables 1 to i-1 of the array }

if AprioriILGrid.Cells[0,j]>AprioriILGrid.Cells[0,j+1] then { If variable j is
bigger than variable j+1 }

begin
flg:=true; { The array isn't sorted, another chack is needed }
Temp:=AprioriILGrid.Cells[0,j];
AprioriILGrid.Cells[0,j]:=AprioriILGrid.Cells[0,j+1]; { We have to swap the

two variables }
AprioriILGrid.Cells[0,j+1]:=Temp;

end;
i:=i-1; { Variable i is "sorted", we should chack again from 1 to i-1 }

end; { The array is sorted }
ProgressForm.Hide;
AprioriForm.Enabled:=True;

end;

procedure TAprioriForm.AutoAssociationTimerTimer(Sender: TObject);
begin

AutoAssociationTimer.Enabled:=False;
if FindAuto then

NextButtonClick(Sender);
end;

procedure TAprioriForm.FormCreate(Sender: TObject);
begin

StringGrid2.Cells[0,0]:='Illegal set';
StringGrid3.Cells[0,0]:='Sets';
StringGrid3.Cells[1,0]:='Frequency';

end;

end.

- 78 -

5.4. FinalAssociationUnit unit

unit FinalAssociationUnit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls,Sets ,DataInputUnit, Grids,Math, Mask, HashTable,LinkedList;

Type
TFinalAssociationForm = class(TForm)

GroupBox1: TGroupBox;
StringGrid1: TStringGrid;
GroupBox2: TGroupBox;
ListBox1: TListBox;
Label1: TLabel;
Button1: TButton;
Edit1: TMaskEdit;
procedure FormShow(Sender: TObject);
procedure Edit1Change(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure SortAssoc;
procedure StringGrid1DblClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
FinalAssociationForm: TFinalAssociationForm;

implementation

uses ProgressUnit;

- 79 -

var
TempSetsArray : THashTable;

{$R *.DFM}

The TempPowerSet procedure generates all sub-sets of size n and stores them in a
temporary hash table.

Procedure TempPowerSet(S:TIntSet);
var

TempNum : LongWord;
xx : LongWord;
i : byte;
Se : array[1..MAX_SET_SIZE] of byte;
TS : TIntSet;
NOE : Byte;

Begin
FreeHashTable(TempSetsArray);
if S<>[] then // There are no subsets for an empty set
begin

// Save the Set values in the array;
i:=1;
for xx:=1 to MAX_SET_SIZE do
begin

Se[xx]:=0;
if xx in S then
begin

Se[i]:=xx;
Inc(i);

end;
end;
NOE:=Trunc(Power(2,NumOfElements(S)))-2; // The number of sets in the Power-set,

without the empty set and the original set
for xx:=1 to NOE do
begin

TS:=[];
TempNum:=xx;
for i:=1 to xx do
begin

if (TempNum mod 2)=1 then
TS:=TS+[Se[i]];

TempNum:=TempNum div 2;
end;
if TS<>[] then

AddHashTable(TempSetsArray,TS);
end;

end;
end;

//--

The FormShow procedure generates the association rules from the Itemsets found in
the last stage of the mining operation (with either the Native or Apriori algorithms).
Displays them, and let you select a desired confidence, and displays all association
rules with the desired confidence and higher.
procedure TFinalAssociationForm.FormShow(Sender: TObject);
var

x,i,j,y : integer;
S : TIntSet;
SetCount : integer;
SubSetCount : integer;
ISA,TISA : TLinkedSetsPtr;

Begin
Edit1.Text:='0';
FreeHashTable(TempSetsArray);
FreeHashTable(ItemSets);
ListBox1.Clear;

- 80 -

for i:=1 to DataInputForm.Data.RowCount-1 do // Scan all rows
begin

Application.ProcessMessages;
S:=[];
for j:=1 to DataInputForm.Data.ColCount-1 do
begin

Application.ProcessMessages;
if DataInputForm.Data.Cells[j,i]='1' then // Creates a set

S:=S+[j]
Else

if FindInverse then
S:=S+[j+NEG_POS_ELEM];

end;
SerIndex:=0;
PowerSet (S,n-1,i); // Gets all subsets length n

end;

StringGrid1.RowCount:=1;
StringGrid1.Cells[0,0]:='Association rule';
StringGrid1.Cells[1,0]:='Confidence';

ProgressForm.Show;
ProgressForm.Label1.Caption:='Generating association rules...';
HashTableHead(ItemSets);
ISA:=ItemSets.DataPtr;
for x:=0 to HashTableCount(ItemSets)-1 do
begin

ProgressForm.ProgressBar1.Position:=Trunc(100*x/(HashTableCount(ItemSets)-1));
ProgressForm.Process;
if ISA^.Data<>[] then
begin

SetCount:=0;
if not(HasSubSetInIL(ISA^.Data)) then
begin

for i:=1 to DataInputForm.Data.RowCount-1 do
begin

S:=[];
for j:=1 to DataInputForm.Data.ColCount-1 do
begin

Application.ProcessMessages;
if DataInputForm.Data.Cells[j,i]='1' then

S:=S+[j]
Else

if FindInverse then
S:=S+[j+NEG_POS_ELEM]; // Creates a set from a line

end;
if s>=ISA^.Data then

SetCount:=SetCount+1;
end;
TempPowerSet(ISA^.Data);
HashTableHead(TempSetsArray);
TISA:=TempSetsArray.DataPtr;
for j:=0 to HashTableCount(TempSetsArray)-1 do // here is the set
begin

SubSetCount:=0;
for i:=1 to DataInputForm.Data.RowCount-1 do
begin

S:=[];
for y:=1 to DataInputForm.Data.ColCount-1 do

if DataInputForm.Data.Cells[y,i]='1' then // Creates a set
S:=S+[y]

Else
if FindInverse then

S:=S+[y+NEG_POS_ELEM];
if s>=TISA^.Data then

SubSetCount:=SubSetCount+1;
end;
StringGrid1.RowCount:=StringGrid1.RowCount+1;
StringGrid1.Cells[0,StringGrid1.RowCount-1]:=SetToStr(TISA^.Data)+' ==>

'+SetToStr(ISA^.Data-TISA^.Data);
StringGrid1.Cells[1,StringGrid1.RowCount-1]:=FloatToStr(SetCount/SubSetCount);

ListBox1.Items.Add(SetToStr(TISA^.Data)+' ==>
'+SetToStr(ISA^.Data-TISA^.Data));

HashTableNext(TempSetsArray);

- 81 -

TISA:=TempSetsArray.DataPtr;
end;

end;
end;
HashTableNext(ItemSets);
ISA:=ItemSets.DataPtr;

end;
ProgressForm.Hide;

if StringGrid1.RowCount=1 then
begin

Beep;
MessageDlg('Association or Inverse Accosiation Rules cannot be found !',

mtInformation ,[mbOk], 0);
StringGrid1.RowCount:=2;

end;
StringGrid1.FixedRows:=1;
if DataInputForm.SortAssociationsTable1.Checked then

SortAssoc;
end;

procedure TFinalAssociationForm.Edit1Change(Sender: TObject);
var

x : integer;
S : String;

begin
ListBox1.Clear;
S:=Edit1.Text;
While Pos(' ',S)<>0 do

S[Pos(' ',S)]:='0';
if StrToFloat(S)>0 then

if S[1]='.' then
S:='0'+S;

Edit1.Text:=S;
if StrToFloat(S)>1 then
begin

Edit1.Text:='1';
S:='1';

end;
try

for x:=1 to StringGrid1.RowCount-1 do
begin

if StrToFloat(S)<=StrToFloat(StringGrid1.Cells[1,x]) then
ListBox1.Items.Add(StringGrid1.Cells[0,x]);

end;
except
end;

end;

Pressing the “Close” button, return the user to the main screen. This is done by the
Button1Click procedure.

procedure TFinalAssociationForm.Button1Click(Sender: TObject);
begin

Hide;
end;

The SortAssoc procedure sorts the association rules table, if the sorting was enabled
(from the main screen from). This is an implementation of the bubble-sort algorithm.
procedure TFinalAssociationForm.SortAssoc;
var

i,j : integer; { Variables used for array scanning }
flg : boolean; { A flag }
Temp: String;

begin
ProgressForm.Show;
ProgressForm.Label1.Caption:='Sorting association rules table...';
i:=StringGrid1.RowCount-1; { i gets the size of the array }
flg:=true; { If the flag is set to true, then the array is not sorted }

- 82 -

while (i>1) and (flg) do { If i is bigger than 1 and the flag is set to true (the
array isn't sorted) }

begin

ProgressForm.ProgressBar1.Position:=Trunc(100*(StringGrid1.RowCount-1-i)/(StringGrid1.
RowCount-1));

ProgressForm.Process;
flg:=false; { Let's assume the the array is already sorted }
for j:=1 to i-1 do { We are scanning variables 1 to i-1 of the array }

if StringGrid1.Cells[1,j]>StringGrid1.Cells[1,j+1] then { If variable j is
bigger than variable j+1 }

begin
flg:=true; { The array isn't sorted, another chack is needed }
Temp:=StringGrid1.Cells[0,j];
StringGrid1.Cells[0,j]:=StringGrid1.Cells[0,j+1]; { We have to swap the two

variables }
StringGrid1.Cells[0,j+1]:=Temp;
Temp:=StringGrid1.Cells[1,j];
StringGrid1.Cells[1,j]:=StringGrid1.Cells[1,j+1]; { We have to swap the two

variables }
StringGrid1.Cells[1,j+1]:=Temp;

end;
i:=i-1; { Variable i is "sorted", we should chack again from 1 to i-1 }

end; { The array is sorted }
ProgressForm.Hide;

end;

procedure TFinalAssociationForm.StringGrid1DblClick(Sender: TObject);
var

x : Integer;
TempW : Integer;

begin
TempW:=0;
for x:=0 to StringGrid1.RowCount-1 do
begin

if StringGrid1.Canvas.TextWidth(StringGrid1.Cells[0,x])>TempW then
TempW:=StringGrid1.Canvas.TextWidth(StringGrid1.Cells[0,x]);

end;
StringGrid1.ColWidths[0]:=TempW+5;

end;

procedure TFinalAssociationForm.FormCreate(Sender: TObject);
begin

InitHashTable(TempSetsArray);
end;

procedure TFinalAssociationForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
FreeHashTable(TempSetsArray);

end;

end.

5.5. ProgressUnit Unit

unit ProgressUnit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ComCtrls, StdCtrls;

- 83 -

type
TProgressForm = class(TForm)

ProgressBar1: TProgressBar;
Label1: TLabel;
procedure Process;

private
{ Private declarations }

public
{ Public declarations }

end;

var
ProgressForm: TProgressForm;

implementation

{$R *.DFM}

The Prcess procedure is used whenever the program is using a loop, in order to make
the program look working and not stack.
procedure TProgressForm.Process;
begin

Application.ProcessMessages;
end;

end.

5.6. ResizeTableUnit Unit

unit ResizeTableUnit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Spin;

type
TResizeTableForm = class(TForm)

Button1: TButton;
GroupBox1: TGroupBox;
Label1: TLabel;
SpinEdit1: TSpinEdit;
Label2: TLabel;
SpinEdit2: TSpinEdit;
GroupBox2: TGroupBox;
Label3: TLabel;
SpinEdit3: TSpinEdit;
Edit4: TEdit;
Edit1: TEdit;
SpinEdit4: TSpinEdit;

- 84 -

Label5: TLabel;
Label4: TLabel;
Label6: TLabel;
procedure FormShow(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure SpinEdit3Change(Sender: TObject);
procedure SpinEdit4Change(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
ResizeTableForm: TResizeTableForm;

implementation

uses DataInputUnit;

{$R *.DFM}

The FormShow procedure is used to update the information that the resize form
dialogue shows.
procedure TResizeTableForm.FormShow(Sender: TObject);
begin

SpinEdit1.Value:=DataInputForm.Data.ColCount-1;
SpinEdit2.Value:=DataInputForm.Data.RowCount-1;
Edit4.Text:=DataInputForm.Data.Cells[SpinEdit3.Value,0];
Edit1.Text:=DataInputForm.Data.Cells[0,SpinEdit4.Value];

end;

The Button1Click procedure is used to update the data table with the information
entered in the resize form dialogue.
procedure TResizeTableForm.Button1Click(Sender: TObject);
var

x : Integer;
begin

DataInputForm.Enabled:=True;
DataInputForm.Data.ColCount:=SpinEdit1.Value+1;
DataInputForm.Data.RowCount:=SpinEdit2.Value+1;
DataInputForm.Data.Cells[SpinEdit3.Value,0]:=Edit4.Text;
DataInputForm.Data.Cells[0,SpinEdit4.Value]:=Edit1.Text;
DataInputForm.StatusBar1.Panels[1].Text:='Table size:

'+IntToStr(DataInputForm.Data.ColCount-1)+'x'+IntToStr(DataInputForm.Data.RowCount-1);
for x:=1 to DataInputForm.Data.ColCount-1 do
begin

if DataInputForm.Data.Cells[x,0]='' then
DataInputForm.Data.Cells[x,0]:='C'+IntToStr(x);

end;
for x:=1 to DataInputForm.Data.RowCount-1 do
begin

if DataInputForm.Data.Cells[0,x]='' then
DataInputForm.Data.Cells[0,x]:='I'+IntToStr(x);

end;
Hide;

end;

procedure TResizeTableForm.SpinEdit3Change(Sender: TObject);
begin

Edit4.Text:=DataInputForm.Data.Cells[SpinEdit3.Value,0];
end;

procedure TResizeTableForm.SpinEdit4Change(Sender: TObject);
begin

Edit1.Text:=DataInputForm.Data.Cells[0,SpinEdit4.Value];
end;

end.

- 85 -

5.7. AboutUnit Unit

unit AboutUnit;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons, ExtCtrls, ShellAPI;

type
TAboutBoxForm = class(TForm)

Panel1: TPanel;
ProgramIcon: TImage;
OKButton: TButton;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
procedure OKButtonClick(Sender: TObject);
procedure Label1MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure FormMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure Label1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
AboutBoxForm: TAboutBoxForm;

implementation

uses DataInputUnit;

{$R *.DFM}

The OKButtonClick procedure closes the about box, and brings the user back to the
main screen.
procedure TAboutBoxForm.OKButtonClick(Sender: TObject);
begin

Hide;

- 86 -

DataInputForm.Enabled:=True;
end;

procedure TAboutBoxForm.Label1MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

begin
Label1.Font.Color:=clRed;

end;

procedure TAboutBoxForm.FormMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

begin
Label1.Font.Color:=clBlue;

end;

The Label1Click procedure opens your default web browser, showing you the
association rules miner homepage.

procedure TAboutBoxForm.Label1Click(Sender: TObject);
begin
ShellExecute(GetDesktopWindow(), 'open',

PChar('http://users.surfree.net.il/orennahum/assoc.htm'), nil, nil, SW_SHOWNORMAL);
end;

end.

5.8. Sets Unit
unit Sets;

interface

uses Sysutils,Math;

Const
MAX_SET_SIZE = 30*2;
NEG_POS_ELEM = MAX_SET_SIZE div 2;

Type
TIntSet = set of 1..MAX_SET_SIZE; // A set can have at most 256 elements

var
SerIndex : LongWord;
SMax : LongWord;

procedure PowerSet(S:TIntSet; L,LineNum:Integer);
function HasSubSetInIL(S:TIntSet):boolean;
function SetToStr(S:TIntSet):String;
function NumOfElements(S:TIntSet):Integer;
function NumOfSubSets(SerSize:Integer):LongWord;
function Factorial(n:integer):Extended;

implementation

uses DataInputUnit,ProgressUnit,Dialogs,LinkedList,HashTable;

The Factorial function returns the factorial of n.
function Factorial(n:integer):Extended;
var

x : integer;
r : Extended;

begin
r:=1;
Factorial:=1;
if n>0 then
begin

for x:=1 to n do
r:=r*x;

Factorial:=r;
end;

- 87 -

end;

The NumOfSubSets function returns the maximum number of possible sub-set of a
given size, n.
function NumOfSubSets(SerSize:Integer):LongWord;
var

Nu : Integer;
begin

if FindInverse then
Nu:=2*(DataInputForm.Data.ColCount-1)

else
Nu:=(DataInputForm.Data.ColCount-1);

NumOfSubSets:=Trunc(Factorial(Nu) / (Factorial(SerSize)*Factorial(Nu-SerSize)));
end;

// ------------------ General Sets functions and procedures -------------------

For a given set, the SetToStr function returns a string that contains the elements of
the set. The returned string can be printed, for example.
function SetToStr(S:TIntSet):String; // Convers a Set to String
var

x : Integer;
St : String;

begin
St:='';
for x:=1 to NEG_POS_ELEM do
begin

if (x in S) then
begin

if St='' then // is this the first element in the set
St:=DataInputForm.Data.Cells[x,0]

else
St:=St+', '+DataInputForm.Data.Cells[x,0];

end;
if ((x+NEG_POS_ELEM) in S) then
begin

if St='' then // is this the first element in the set
St:='-'+DataInputForm.Data.Cells[x,0]

else
St:=St+', -'+DataInputForm.Data.Cells[x,0];

end;
end;
SetToStr:=St;

end;

The NumOfElements function, gets a set, and returns the number of elements in the
set.
function NumOfElements(S:TIntSet):Integer; // Returns the number of elements in the
set
var

x : integer;
count : integer;

begin
Count:=0;
for x:=1 to MAX_SET_SIZE do

if x in S then Count:=Count+1;
NumOfElements:=Count;

end;

The PowerSet procedure gets a set, and returns all its sub-sets of a given size.
Procedure PowerSet(S:TIntSet;L,LineNum:Integer);
var

xx : LongWord;
i : byte;
Se : array[1..MAX_SET_SIZE] of byte;

- 88 -

TS : TIntSet;
N : Integer;
x : array[1..MAX_SET_SIZE] of byte;
r : array[1..MAX_SET_SIZE] of byte;
NOE : Byte;
NOS : LongWord;
NOSC : LongWord;

begin
if (S<>[]) and (NumOfElements(S)>=L) then // There are no subsets for an empty set
begin

// Save the Set values in the array;
i:=1;
N:=NumOfElements(S);
for xx:=1 to MAX_SET_SIZE do
begin

r[xx]:=0;
x[xx]:=0;
Se[xx]:=0;
if xx in S then
begin

Se[i]:=xx;
Inc(i);

end;
end;
// Now finding all subsets with size L
NOE:=NumOfElements(S);
if NOE>=L then

NOS:=Trunc(Factorial(NOE)/(Factorial(L)*Factorial(NOE-L)))
else

NOS:=1;
NOSC:=0;
ProgressForm.Show;
ProgressForm.Label1.Caption:='Creating subsets for line number

'+IntToStr(LineNum)+' out of '+IntToStr(DataInputForm.Data.RowCount-1)+'...';
if L>29 then

x[30]:=1
else

x[30]:=0;
repeat

if x[30]<>0 then r[x[30]]:=1;
if L>28 then

x[29]:=x[30]+1
else

x[29]:=0;
repeat

if x[29]<>0 then r[x[29]]:=1;
if L>27 then

x[28]:=x[29]+1
else

x[28]:=0;
repeat

if x[28]<>0 then r[x[28]]:=1;
if L>26 then

x[27]:=x[28]+1
else

x[27]:=0;
repeat

if x[27]<>0 then r[x[27]]:=1;
if L>25 then

x[26]:=x[27]+1
else

x[26]:=0;
repeat

if x[26]<>0 then r[x[26]]:=1;
if L>24 then

x[25]:=x[26]+1
else

x[25]:=0;
repeat

if x[25]<>0 then r[x[25]]:=1;
if L>23 then

x[24]:=x[25]+1
else

x[24]:=0;

- 89 -

repeat
if x[24]<>0 then r[x[24]]:=1;
if L>22 then

x[23]:=x[24]+1
else

x[23]:=0;
repeat

if x[23]<>0 then r[x[23]]:=1;
if L>21 then

x[22]:=x[23]+1
else

x[22]:=0;
repeat

if x[22]<>0 then r[x[22]]:=1;
if L>20 then

x[21]:=x[22]+1
else

x[21]:=0;
repeat

if x[21]<>0 then r[x[21]]:=1;
if L>19 then

x[20]:=x[21]+1
else

x[20]:=0;
repeat

if x[20]<>0 then r[x[20]]:=1;
if L>18 then

x[19]:=x[20]+1
else

x[19]:=0;
repeat

if x[19]<>0 then r[x[19]]:=1;
if L>17 then

x[18]:=x[19]+1
else

x[18]:=0;
repeat

if x[18]<>0 then r[x[18]]:=1;
if L>16 then

x[17]:=x[18]+1
else

x[17]:=0;
repeat

if x[17]<>0 then r[x[17]]:=1;
if L>15 then

x[16]:=x[17]+1
else

x[16]:=0;
repeat

if x[16]<>0 then r[x[16]]:=1;
if L>14 then

x[15]:=x[16]+1
else

x[15]:=0;
repeat

if x[15]<>0 then r[x[15]]:=1;
if L>13 then

x[14]:=x[15]+1
else

x[14]:=0;
repeat

if x[14]<>0 then r[x[14]]:=1;
if L>12 then

x[13]:=x[14]+1
else

x[13]:=0;
repeat

if x[13]<>0 then r[x[13]]:=1;
if L>11 then

x[12]:=x[13]+1
else

x[12]:=0;
repeat

if x[12]<>0 then r[x[12]]:=1;

- 90 -

if L>10 then
x[11]:=x[12]+1

else
x[11]:=0;

repeat
if x[11]<>0 then r[x[11]]:=1;
if L>9 then

x[10]:=x[11]+1
else

x[10]:=0;
repeat

if x[10]<>0 then r[x[10]]:=1;
if L>8 then

x[9]:=x[10]+1
else

x[9]:=0;
repeat

if x[9]<>0 then r[x[9]]:=1;
if L>7 then

x[8]:=x[9]+1
else

x[8]:=0;
repeat

if x[8]<>0 then r[x[8]]:=1;
if L>6 then

x[7]:=x[8]+1
else

x[7]:=0;
repeat

if x[7]<>0 then r[x[7]]:=1;
if L>5 then

x[6]:=x[7]+1
else

x[6]:=0;
repeat

if x[6]<>0 then r[x[6]]:=1;
if L>4 then

x[5]:=x[6]+1
else

x[5]:=0;
repeat

if x[5]<>0 then r[x[5]]:=1;
if L>3 then

x[4]:=x[5]+1
else

x[4]:=0;
repeat

if x[4]<>0 then r[x[4]]:=1;
if L>2 then

x[3]:=x[4]+1
else

x[3]:=0;
repeat

if x[3]<>0 then
r[x[3]]:=1;

if L>1 then
x[2]:=x[3]+1

else
x[2]:=0;

repeat
x[1]:=x[2]+1;
if x[2]<>0 then

r[x[2]]:=1;
repeat

Inc(NOSC);

ProgressForm.ProgressBar1.Position:=Trunc(NOSC/NOS*100);
ProgressForm.Process;
r[x[1]]:=1;
TS:=[];
for i:=1 to N do
begin

if r[i]=1 then
TS:=TS+[Se[i]];

- 91 -

end;
if NumOfElements(TS)=L

then

AddHashTable(ItemSets,TS);
r[x[1]]:=0;
Inc(x[1]);

until x[1]>NOE;
r[x[2]]:=0;
Inc(x[2]);

until (x[2]>NOE-1) or
(L<2);

r[x[3]]:=0;
Inc(x[3]);

until (x[3]>NOE-2) or (L<3);
r[x[4]]:=0;
Inc(x[4]);

until (x[4]>NOE-3) or (L<4);
r[x[5]]:=0;
Inc(x[5]);

until (x[5]>NOE-4) or (L<5);
r[x[6]]:=0;
Inc(x[6]);

until (x[6]>NOE-5) or (L<6);
r[x[7]]:=0;
Inc(x[7]);

until (x[7]>NOE-6) or (L<7);
r[x[8]]:=0;
Inc(x[8]);

until (x[8]>NOE-7) or (L<8);
r[x[9]]:=0;
Inc(x[9]);

until (x[9]>NOE-8) or (L<9);
r[x[10]]:=0;
Inc(x[10]);

until (x[10]>NOE-9) or (L<10);
r[x[11]]:=0;
Inc(x[11]);

until (x[11]>NOE-10) or (L<11);
r[x[12]]:=0;
Inc(x[12]);

until (x[12]>NOE-11) or (L<12);
r[x[13]]:=0;
Inc(x[13]);

until (x[13]>NOE-12) or (L<13);
r[x[14]]:=0;
Inc(x[14]);

until (x[14]>NOE-13) or (L<14);
r[x[15]]:=0;
Inc(x[15]);

until (x[15]>NOE-14) or (L<15);
r[x[16]]:=0;
Inc(x[16]);

until (x[16]>NOE-15) or (L<16);
r[x[17]]:=0;
Inc(x[17]);

until (x[17]>NOE-16) or (L<17);
r[x[18]]:=0;
Inc(x[18]);

until (x[18]>NOE-17) or (L<18);
r[x[19]]:=0;
Inc(x[19]);

until (x[19]>NOE-18) or (L<19);
r[x[20]]:=0;
Inc(x[20]);

until (x[20]>NOE-19) or (L<20);
r[x[21]]:=0;
Inc(x[21]);

until (x[21]>NOE-20) or (L<21);
r[x[22]]:=0;
Inc(x[22]);

until (x[22]>NOE-21) or (L<22);
r[x[23]]:=0;
Inc(x[23]);

- 92 -

until (x[23]>NOE-22) or (L<23);
r[x[24]]:=0;
Inc(x[24]);

until (x[24]>NOE-23) or (L<24);
r[x[25]]:=0;
Inc(x[25]);

until (x[25]>NOE-24) or (L<25);
r[x[26]]:=0;
Inc(x[26]);

until (x[26]>NOE-25) or (L<26);
r[x[27]]:=0;
Inc(x[27]);

until (x[27]>NOE-26) or (L<27);
r[x[28]]:=0;
Inc(x[28]);

until (x[28]>NOE-27) or (L<28);
r[x[29]]:=0;
Inc(x[29]);

until (x[29]>NOE-28) or (L<29);
r[x[30]]:=0;
Inc(x[30]);

until (x[30]>NOE-29) or (L<30);
end;
ProgressForm.Hide;

end;

// ------------------ Illegal List functions and procedures -------------------

The HasSubSetInIL function gets a set, and checks whether the Illegal List contains
any sets that are sub-sets to the checked set.
function HasSubSetInIL(S:TIntSet):boolean;
var

Temp : TLinkedSetsPtr;
begin

HasSubSetInIL:=False;
Temp:=IllegalList.Head;
while Temp<>Nil do
begin

if (Temp^.Data<=S) and (NumOfElements(S)>=NumOfElements(Temp^.Data)) then // has a
sub-set

begin
HasSubSetInIL:=true;
exit;

end;
Temp:=Temp^.Next;

end;
end;

end.

5.9. LinkedList Unit
unit LinkedList;

interface

uses Sets;

Type
TLinkedSetsPtr = ^TLinkedSets;
TLinkedSets = Record

Data : TIntSet;
Next : TLinkedSetsPtr;

end;
TLinkedSet = Record

Head : TLinkedSetsPtr;
Count : LongWord;

end;

procedure InitLinkedList(var LS:TLinkedSet);

- 93 -

procedure FreeLinkedList (var LS:TLinkedSet);
procedure AddLinkedList (var LS:TLinkedSet;S:TIntSet);
procedure CleanLinkedList (var LS:TLinkedSet);

implementation

uses ProgressUnit;

The InitLinkedList procedure initializes the linked list structure.
procedure InitLinkedList(var LS:TLinkedSet);
begin

LS.Head:=Nil;
LS.Count:=0;

end;

The FreeLinkedList procedure remover all the elements of the linked list from the
linked list, and frees all dynamically allocated memory used by the linked list
elements.
procedure FreeLinkedList (var LS:TLinkedSet);
var

Temp : TLinkedSetsPtr;
begin

While LS.Head<>Nil do
begin

Temp:=LS.Head^.Next;
Dispose(LS.Head);
LS.Head:=Temp;
ProgressForm.Process;

end;
LS.Head:=Nil;
LS.Count:=0;

end;

The CleanLinkedList procedure removes all elements of the linked list, which have
an empty set as their data.
procedure CleanLinkedList (var LS:TLinkedSet);
var

Temp : TLinkedSetsPtr;
Prev : TLinkedSetsPtr;

begin
While (LS.Head<>Nil) and (LS.Head^.Data=[]) do
begin

Temp:=LS.Head^.Next;
Dispose(LS.Head);
LS.Head:=Temp;
Dec(LS.Count);
ProgressForm.Process;

end;
if LS.Head<>Nil then
begin

Prev:=LS.Head;
Temp:=Prev^.Next;
While Temp<>Nil do
begin

if Temp.Data=[] then
begin

Prev^.Next:=Temp^.Next;
Dispose(Temp);
Dec(LS.Count);
Temp:=Prev;

end;
Prev:=Temp;
Temp:=Temp^.Next;

end;
end;

end;

- 94 -

The AddLinkedList procedure adds an element to the linked list, if this element is not
already in the list.
procedure AddLinkedList (var LS:TLinkedSet;S:TIntSet);
var

Temp : TLinkedSetsPtr;
Found : Boolean;

begin
if LS.Head=Nil then
begin

New(LS.Head);
LS.Head^.Data:=S;
LS.Head^.Next:=Nil;
Inc(LS.Count);

end
else
begin

Temp:=LS.Head;
Found:=False;
while (Not(Found)) and (Temp^.Next<>Nil) do
begin

if Temp^.Data=S then
Found:=True;

Temp:=Temp^.Next;
ProgressForm.Process;

end;
if Not(Found) and (Temp^.Data<>S) Then
begin

New(Temp^.Next);
Temp^.Next^.Data:=S;
Temp^.Next^.Next:=Nil;
Inc(LS.Count);

end;
end;

end;

end.

5.10. HashTable Unit
unit HashTable;

interface

uses Sets,LinkedList;

Const
HASH_ARRAY_SIZE = 500;

Type
THashTable = Record

Data : Array[0..HASH_ARRAY_SIZE-1] of TLinkedSet;
DataPtr : TLinkedSetsPtr;
DataLoc : Integer;

end;

function HashFunction(S:TIntSet):Integer;
procedure InitHashTable(var HT:THashTable);
procedure FreeHashTable(var HT:THashTable);
function InHashTable(HT:THashTable;S:TIntSet):Boolean;
procedure AddHashTable(var HT:THashTable;S:TIntSet);
Procedure HashTableNext(var HT:THashTable);
Procedure HashTableHead(var HT:THashTable);
procedure CleanHashTable(var HT:THashTable);
function HashTableCount(HT:THashTable):LongWord;

implementation

uses ProgressUnit,Windows;

The HashFunction function maps every set to an entry in the hash table.

- 95 -

function HashFunction(S:TIntSet):Integer;
var

x : Integer;
r,v : Int64;

begin
r:=1;
v:=0;
for x:=1 to MAX_SET_SIZE do
begin

r:=r*2;
if x in S then

v:=v+r;
end;
Result:=v mod HASH_ARRAY_SIZE;

end;

The hash table is an array of linked lists. The InitHashTable procedure initializes
every linked list of the hash table.
procedure InitHashTable(var HT:THashTable);
var

x : Integer;
begin

HT.DataPtr:=Nil;
HT.DataLoc:=0;
for x:=0 to HASH_ARRAY_SIZE-1 do

InitLinkedList(HT.Data[x]);
end;

The hash table is an array of linked lists. The FreeHashTable procedure frees every
linked list of the hash table.
procedure FreeHashTable(var HT:THashTable);
var

x : Integer;
begin

HT.DataPtr:=Nil;
HT.DataLoc:=0;
for x:=0 to HASH_ARRAY_SIZE-1 do

FreeLinkedList(HT.Data[x]);
end;

The InHashTable function gets a set and checks whether this set is already in the
hash table.
function InHashTable(HT:THashTable;S:TIntSet):Boolean;
var

Temp:TLinkedSetsPtr;
begin

if HT.Data[HashFunction(S)].Head=Nil then
begin

Result:=False;
exit;

end
else
Begin

Temp:=HT.Data[HashFunction(S)].Head;
While (Temp^.Next=Nil) and (Temp^.Data<>S) do
begin

if Temp^.Data=S then
begin

Result:=True;
break;

end;
Temp:=Temp^.Next;
ProgressForm.Process;

end;
Result:=False;

end;
end;

- 96 -

The AddHashTable procedure gets a set, and adds it to the linked list. It maps the set
to an entry of the hash table using the hash function, and then adds it to the linked list
associated to the mapped entry.
procedure AddHashTable(var HT:THashTable;S:TIntSet);
begin

AddLinkedList(HT.Data[HashFunction(S)],S);
end;

The HashTableHead procedure sets the hash table’s element pointer to the first
element of the hash table.
Procedure HashTableHead(var HT:THashTable);
var

x : Integer;
begin

HT.DataPtr:=Nil;
HT.DataLoc:=0;
for x:=0 to HASH_ARRAY_SIZE do

if HT.Data[x].Head<>Nil then
begin

HT.DataLoc:=x;
HT.DataPtr:=HT.Data[x].Head;
break;

end;
end;

The HashTableNext procedure sets the hash table’s element pointer to the next
element of the hash table.
procedure HashTableNext(var HT:THashTable);
var

x : Integer;
begin

if HT.DataPtr^.Next<>Nil then
begin

HT.DataPtr:=HT.DataPtr^.Next;
end
else
begin

x:=HT.DataLoc+1;
HT.DataPtr:=Nil;
HT.DataLoc:=0;
While x<HASH_ARRAY_SIZE do
begin

if HT.Data[x].Head<>Nil then
begin

HT.DataLoc:=x;
HT.DataPtr:=HT.Data[x].Head;
break;

end;
x:=x+1;

end;
end;

end;

The HashTableCount function returns the number of elements in the hash table.
function HashTableCount(HT:THashTable):LongWord;
var

x : Integer;
s : LongWord;

begin
s:=0;
for x:=0 to HASH_ARRAY_SIZE-1 do
begin

s:=s+HT.Data[x].Count;
end;
HashTableCount:=s;

end;

- 97 -

The CleanHashTable procedure cleans every linked list associated with the hash
table.
procedure CleanHashTable(var HT:THashTable);
var

x : Integer;
begin

for x:=0 to HASH_ARRAY_SIZE-1 do
begin

if x<HASH_ARRAY_SIZE then
CleanLinkedList(HT.Data[x]);

end;
end;

end.

- 98 -

6. Summary

Knowledge discovery is the most desirable-end product in computing. Finding new
phenomena or enhancing our knowledge about them has a greater long-range value
than optimizing production processes or inventories, and as second only to tasks that
help preserve our world and our environment. It is not surprising that it is also one of
the most difficult computing challenges to do well.

Using data mining techniques such as classification, regression, clustering,
summarization and so on, is a step in the process of knowledge discovery. Other data
mining methods are decision trees and rules, example based methods, probabilistic
graphical dependency methods and relational learning models are used to extract
knowledge from data.

One of the many end products of the data mining techniques and knowledge discovery
are association rules.

Association rules are statements of the form “98% of the customers that purchase tires
and automobile accessories also get automotive services.” Association rules are a
simple and natural class of database regularities, useful in various analysis and
prediction tasks. We have considered the problem of finding all association rules
satisfying user-specified support and confidence constraints that hold a given
database.

We introduced two algorithms for mining association rules, and a simple modification
to those algorithms that allowed us to mine inverse association rules.

An important part of mining association rules is finding large itemsets. We gave two
examples, one for finding association rules, and one for finding inverse association
rules, in which we use a “Native” algorithm for generating the itemsets. A better way,
which generates the itemsets much faster, was presented in two algorithms, AIS and
Apriori. When the Native algorithm and the Apriori algorithm were implemented in
the “Association Rules Miner” program.

6.1. Future Work

While working on this paper, we came across an interesting phenomenon. While
testing the “association rules miner” program, we saw that the Apriori algorithm,
which in terms of efficiency works much faster when mining association rules,
compared to the Native algorithms, showed very poor results when mining inverse
association rules. A first look suggested that the difference between mining
association rules and mining inverse association rules is in the “density” of the data
table. The data table of inverse association rules is much more dense then the regular
association rules. When trying to apply the Apriori algorithm on a denser data table,
we saw that our first impression was wrong. It seems now, that the threshold function
is the main reason for this phenomenon. When mining association rules, using a dense
data table simply results with high values of threshold, which rules out many Itemsets
faster. Such behavior cannot be reached when mining inverse association rules. A

- 99 -

future study of the threshold function might result with a new threshold function,
which can increase the efficiency of the Apriori algorithm for the inverse association
rules mining process.

Other future work might focus on mining association rules when the known data is
some items that the customer bought, some items that he didn’t buy, and the other is
unknown. This is different from the regular association rules and inverse association
rules in terms of the known data. While mining association rules we are using only
know data, and while mining inverse association rules, unknown data is automatically
treated as items that the customer didn’t buy. A future work might consider a more
reliable data analysis.

Currently our mining algorithms are looking for association rules of the form X⇒Y,
when X an Y are some items. We are not interested in the quantities of the items in the
rules. Another way of defining association rules might be statements of the form
“98% of the customers that purchase one loaf of bread also get two bottles of milk.”
Such association rules might be the result of new mining algorithms.

- 100 -

7. Acknowledgments

We would like to thank Prof. M. Schneider for his support throughout this paper. We
would also like to thank Dr. V. Levit for his help with the sets algorithms, and his
help with the interpretation of the results.

Special thanks to Noële Nelson, who despite her lake of time, read this paper and gave
her comments.

- 101 -

8. References

[1] A. Shragai and M. Schneider, Discovering Inverse Associations in Databases,
Tel-Aviv University, 2000.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast
Discovery of Association Rules, Advances in Knowledge Discovery and Data
Mining, U. Fayyad et, al (eds), The MIT Press, Cambridge Massachusetts,
1996.

[3] R. Agrawal, T. Imielinski, and A. Swami, Mining Association Rules between
Sets of Items in Large Databases, In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, D.C., 1993.

[4] Ryszard S. Michalsk and Kenneth A. Kaufman, Data Mining and Knowledge
Discovery: A Review of Issues and a Multistrategy Approach, Machine
Learning and Data Mining – Methods and Applications, Ryszard S. Michalsk,
Ivan Bratko and Miroslav Kubat, John Wiley & Sons, 1997.

[5] R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules,
Proceeding of the 20th VLDB Conference Santiago, Chile, 1994.

[6] U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth, From Data Mining to
Knowledge Discovery: An Overview, Advances in Knowledge Discovery and
Data Mining, U. Fayyad et, al (eds), The MIT Press, Cambridge Massachusetts,
1996.

[7] R. Agrawal, T. Imielinski and A. Swami, Database Mining: A Performance
Perspective, IEEE Transaction on Knowledge and Data Engineering. Special
Issue on Learning and Discovery in Knowledge Based Databases, December
1993.

[8] R. J. Brachman and T. Anand, The Process of Knowledge Discovery in
Databases, Advances in Knowledge Discovery and Data Mining, U. Fayyad et,
al (eds), The MIT Press, Cambridge Massachusetts, 1996.

[9] B. Lent, A. Swami and J. Widom, Clustering Association Rules, Internet
Profiles Corporation, San Francisco, California.

[10] K. Loudon, Mastering Algorithms With C, O’reilly, 1999.

[11] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms,
The MIT Press, Cambridge Massachusetts, 1990.

[12] M. Cantù, Mastering Delphi 5, Sybex Inc., San Francisco, 1999.

[13] K. Ali, S. Manganaris and R. Srikant, Partial Classification using Association
Rules, American Association for Artificial Intelligence, 1997.

[14] R. Srikant, Q. Vu and R. Agrawal, Mining Association Rules with Items
Constraints, American Association for Artificial Intelligence, 1997.

- 102 -

[15] R. Srikant and R. Agrawal, Mining Generalized Association Rules, Proceedings
of the 21st VLDB Conference, Zurich, Switzerland, 1995.

[16] R. Agrawal, M. Metha, J. Shafer, R. Srikant, A. Arning and T. Bollinger, The
Quest Data Mining System.

